История открытия закона Ома

В начале XIX века значительное число физиков увлеклись выяснением качественных и количественных закономерностей явлений электромагнетизма. Что же касается первопричины всех этих явлений, самого электрического тока, то здесь продолжали царить весьма туманные представления, лишенные каких бы то ни было опытных обоснований.

Первым физиком, попытавшимся выяснить основные внутренние закономерности прохождения постоянного электрического тока через проводники, был скромный школьный учитель в г. Кельне Георг Симон Ом (1789—1854), удостоенный лишь в возрасте 62 лет, т. е. за два года до своей смерти, звания ординарного профессора.

Георг Симон Ом (1789—1854)

Георг Симон Ом родился в Эрлангене в 1789 году в семье слесаря, у которого было очень необычное для сресаря хобби: он сам хорошо знал и любил математику и сумел научить математике своих детей. Всю свою жизнь Георг Симон Ом он был «всего лишь» учителем математики, но его открытия в области физики были настолько важны, что он вошел в историю естественных наук.

После посещения гимназии Георг Симон Ом сначала изучал математику, физику и философию в Эрлангене, а у своего отца научился металлообработке. В течение следующих нескольких десятилетий он зарабатывал на жизнь учителем математики и физики в Швейцарии, Бамберге и Кельне. Помимо преподавательской деятельности, Ом проводил интенсивные исследования и эксперименты в области физики.

С 1817 г. по 1825 г. Ом работает старшим преподавателем математики и физики в реальной гимназии Кельна-на-Рейне, где в 1820 г. почти одновременно с А. М. Ампером начинает заниматься исследованием гальванических цепей. К 1825 г. все основные экспериментальные работы оказались законченными, и автор для завершения и подготовки к публикации обобщающей рукописи переезжает из провинции в Берлин.

Несмотря на успешные исследования, вначале он не получил большого признания как ученый. Закон Ома, сформулированный им в 1826 году и с помощью которого он вошел в историю как физик, в то время в значительной степени игнорировался.

Прежде всего Ом задался целью определить количественную связь между электровозбуждающей силой, интенсивностью гальванического тока и сопротивлением проводника. Его первые опыты, опубликованные в 1826 г, затруднялись непостоянством применявшихся в то время гальванических элементов.

По совету Поггендорфа, Ом пользовался в дальнейшем батареей термоэлементов. Установка его состояла из двух оловянных сосудов, в одном из которых находилась кипящая вода, в другом снег или лед.

Термоэлектрическая батарея представляла собой висмутовый стержень, к которому были привинчены болтами пластинки из меди. Места контактов располагались в оловянных полых цилиндрах, опущенных в сосуды. Свободные концы медных пластин были погружены в чашечки с ртутью, к которым были подведены соответствующие проводники. В цепь включались проволочные образцы из различных металлов.

Схема оборудования, использовавшегося Георгом Симоном Омом при проведении своих опытов (из книги "Georg Simon Ohm and the First Comprehensive Theory of Electrical Conductivity in Metals")

Сила тока измерялась посредством крутильного аппарата, изготовленного по чертежам самого Ома. На тонкой сплющенной металлической проволоке длиной около 12 см была подвешена магнитная стрелка, которая располагалась параллельно магнитному меридиану. Стрелка находилась вблизи исследуемого проводника. Когда через проводник шел ток, стрелка отклонялась и могла быть возвращена в нулевое положение.

Стрелка находилась вблизи исследуемого проводника. Когда через проводник шел ток, стрелка отклонялась и могла быть возвращена в нулевое положение посредством поворота головки подвеса, снабженной делениями. Относительные значения силы тока определялись по углам поворота.

Ранее английский химик Гемфри Дэви (1778—1829) ввел понятие проводимости проводников, которая прямо пропорциональна сечению проводника и обратно пропорциональна его длине. Он построил ряд металлов в порядке уменьшения проводимости: серебро, медь, свинец, золото, цинк, олово, платина, палладий, железо.

Ом пошел дальше и ввел понятие удельной электропроводности (по современной терминологии), т. е. электропроводности цилиндрического проводника единичной длины и единичной площади сечения.

Варьируя длину, диаметр и материал образцов, Ом пришел к выводу, что его результаты удовлетворяют уравнению

X = а/(b + х),

где X — интенсивность магнитного воздействия проводника длиной х, а и b — константы, зависящие от электровозбуждающей силы батареи и сопротивления прочих частей цепи. В результате кропотливых измерений Ом установил закон, носящий его имя.

Основным законом для электрической цепи является закон, сформулированный немецким физиком Георгом Омом в 1826 г. Закон Ома: I (в амперах) = U (в вольтах)/R ( в омах), т. е. ток через сопротивление прямо пропорционален напряжению на сопротивлении и обратно пропорционален сопротивлению. Это соотношение можно также записать так - напряжение (U) равно произведению тока (I) в амперах и сопротивления (R) в омах.  

Коэффициент пропорциональности в этой формуле, конечно, не случайно равен единице. Ом, ампер и вольт выбраны нарочно такими, как они есть, чтобы обратить этот коэффициент в единицу.

Открытый им закон без сомнения явился в электродинамике центральным и послужил основой для создания других.

Первая формулировка закона Ома, сделанная его собственным почерком в записной книжке (Архив Немецкого музея, Мюнхен, Германия).

Подробнее про закон Ома и его значение смотрите здесь: Закон Ома в популярном изложении

После того, как Георг Симон Ом совершил свое открытие, он не остановился на формальной стороне открытого, им закона. Уже в 1827 г. он опубликовал книгу под заглавием «Гальваническая цепь, обработанная математически», в которой попытался вывести этот закон из теоретических соображений.

Сколь значительный объем работ проделал и к каким выводам пришел Ом, достоверно неизвестно. В предисловии к названной книге он прямо пишет о стесненных материальных условиях и значительных трудностях, связанных с возможностью ознакомления с новой литературой. Поэтому автор указывает, что публикуется только та часть, которая может встретиться с меньшей конкуренцией.

В этой работе Ом исходит из аналогии между распространением «электричества» и «теплоты». Он сопоставляет, открытый им закон для электрического тока с законом для теплового потока, сформулированным Фурье, и подтверждает правильность своего исходного предположения. При этом он впервые вводит (по аналогии с падением температур) «падение электрических напряжений».

Для измерения этого «падения» Ом присоединяет сначала один, затем второй концы проводника с током к «подвижному телу, именуемому «электроскопом» и обладающему неизменными электрическими свойствами, и измеряет силу, с которой подвижная часть электроскопа притягивается или отталкивается от данного конца проводника. Ом назвал эту силу «электроскопической силой». Таким образом, «падение напряжения» измерялось как разность электроскопических сил.

Из аналогии математических выражений для электрического и теплового токов в проводниках «можно,— по мнению Ома,— с полным правом заключить о внутренней связи между этими обоими явлениями природы. И это сходство все возрастает по мере того, как мы его прослеживаем».

Титульные страницы оригинальной книги Ома (на немецком языке) и соответствующие переводы на французский и английский языки

После выхода в свет упомянутой ранее книги Ом до 1830 г. продолжал экспериментировать с электрическими цепями. Позднее занимался вопросами оптики и акустики.

Георг Симон Ом скончался 7 июля 1854 года в возрасте 65 лет от инсульта на мосту через Изар в Мюнхене. Он нашел свое последнее пристанище на старом южном кладбище Мюнхена.

Спустя десятилетия после его смерти в 1881 году «ом» был введен в международном масштабе на 1 Международном конгрессе электриков как единица электрического сопротивления и остается таковой по сей день.

Надгробная плита Георга Симона Ома

В 1843 году Ч. Уитстон применил закон Ома для устройства своего измерительного «мостика» (смотрите - применение моста Уитстона). А законы распределения токов в разветвленных цепях были выведены Г. Кирхгофом лишь в 1845 г.

Разнообразие обнаруженных электрических явлений заставляло физиков задуматься над вопросом, тождественны ли виды электричества, получаемые различными путями, между собой. В изучении этого вопроса принимали участие многие физики во Франции и в Англии. Наиболее основательную попытку критической проверки результатов других авторов и окончательного выяснения вопроса предпринял в 1831 году английский физик Майкл Фарадей (1791—1867).

«Ход исследований по электричеству... привел меня к такому моменту,— писал Фарадей,— когда для продолжения моих исследований стало существенно, чтобы не оставалось никаких сомнений относительно того, тождественны или различны отдельные виды электричества, возбуждаемые различными способами... В целях сравнения различные проявления электричества можно разбить на два рода, а именно: на явления, связанные с электричеством напряжения, и на явления, присущие электричеству в движении».

Сопоставив на опыте тепловое, магнитное, химическое, физическое действия и искры от «вольтова электричества», «обыкновенного электричества» (т. е. получаемого посредством электростатической машины), «магнитоэлектричества» (т. е. получаемого при помощи электромагнитной индукции), «термоэлектричества» и «животного электричества» (т. е. получаемого от электрического ската), Фарадей пришел к общему выводу: «Все виды электричества идентичны по своей природе».

Но сама природа электрического тока оставалась все же для него невыясненной, и Фарадей высказывался по этому вопросу крайне осторожно: «Под током я подразумеваю нечто движущееся поступательно — все равно, что при этом находится в движении: электрическая жидкость или две жидкости, движущиеся в противоположных направлениях, или просто колебания, или, выражаясь более обще, движущиеся в известном направлении силы».

В 1831 году Майкл Фарадей открыл явление электромагнитной индукции, что стало следующим важнешим шагом после открытия закона Ома для развития электротехники.

Использованы материалы книги Я. Г. Дорфмана "Всемирная история физики"

Смотроите также: Магнетизм - от Фалеса до Максвелла


Источник: http://electrik.info