Почему гудит трансформатор, источники вибрации и шума, что такое магнитострикция

Учительница спрашивает Вовочку: - Вовочка, а кем работает твой папа? - Трансформатором, Марья Ивановна. - А это как так? - Ну, он 380 рублей получает, 220 маме отдает, а на остальные 160 гудит… А почему гудит трансформатор? Вы когда-нибудь задумывались об этом? Кто-то скажет что это от того, что плохо закреплены между собой витки или обмотки колеблются, стукаясь о железо. Может быть площадь сердечника оказалась меньше требуемой по расчетам или слишком много вольт на виток получилось при намотке? А соответствует ли подаваемая частота данному материалу сердечника? Давайте, однако, разбираться. На самом деле причиной гудения трансформатора изначально является магнитострикция. Магнитострикцией называется явление изменения размеров и формы ферромагнитного тела под действием переменного магнитного поля. Размеры и форма ферромагнитных тел зависят от состояния их намагниченности. Джеймс Джоуль в 1842 r. впервые обнаружил, что при внесении в магнитное поле железа последнее меняет свою форму, удлиняясь по одним направлениям относительно поля и укорачиваясь по другим. Объем тела тела при этом заметно не менялся. Итак, если ферромагнетик поместить в магнитное поле, то это прежде всего приведет к изменению его результирующей намагниченности. Одновременно с этим будет происходить изменение размеров тела из-за тoгo, что спонтанная намагниченность меняет своё направление в различных участках тела, а следовательно, меняется и направление спонтанных деформаций в них. Это свойство, которое присуще всем телам (ферромагнетикам лишь в наиболее яркой форме). Кроме магнитострикции причинами шума могут быть работающие масляные насосы и вентиляторы систем охлаждения мощных трансформаторов. Электродинамические усилия в обмотках и электромеханические устройства, регулирующие напряжение под нагрузкой, также создают шум. В существенной степени уровень этого шума зависит от величины электромагнитной нагрузки и габаритных размеров трансформатора. И в основе шума именно вибрация ферромагнитного магнитопровода, сопровождающая магнитострикцию. Степень выраженности явления зависит от величины магнитной индукции, а также от структуры и от физических характеристик самой электротехнической стали. Далее вибрация передается маслу и опорам сердечника, а от масла и опор сердечника — непосредственно баку. Поскольку длина волны для сетевой частоты в трансформаторном масле составляет приблизительно 12 метров, а стенка бака расположена на небольшом расстоянии от сердечника, то бак полностью принимает и воспроизводит соответствующие вибрации близлежащих частей сердечника. Иногда прочие источники шума оказываются громче, например та же система активного охлаждения, однако в целом доминирует именно магнитный шум сердечника, вызванный магнитострикцией. Под действием переменного магнитного поля, сердечник испытывает переменные магнитострикционные деформации. И если бы листы стали, из которых набран сердечник, испытывали бы растяжения прямо пропорционально квадрату магнитной индукции, то магнитострикционные колебания обладали бы одной устойчивой частотой, равной 100 Гц для сетевых 50 Гц. Однако на деле эта зависимость не прямопропорциональна, и колебания, а за ними и вибрация бака, выдают шум с высшими гармониками. Как для холоднокатаной, так и для горячекатаной электротехнических сталей данные по относительному количественному удлинению при магнитострикции имеются. Горячекатаная листовая сталь с повышенным содержанием кремния практически полностью препятствует проявлению магнитострикции, и 6% кремния, добавленные в трансформаторную сталь, почти блокируют ее. Но такую сталь невозможно применять в трансформаторах в силу не лучших механических ее характеристик. У холоднокатаной стали, при том же значении магнитной индукции, относительное удлинение оказывается меньше, чем у стали горячекатаной. Но в силу того, что индукция в сердечниках из холоднокатаной стали превосходит индукцию для стали горячекатаной, удлинения сердечников оказываются приблизительно одинаковыми. Исследования показали, что шум магнитопровода из горячекатаной стали при значении индукции в 1,35 Тл соответствует шуму холоднокатаной стали при магнитной индукции 1,55 Тл. А при увеличении индукции в сердечнике трансформатора из холоднокатаной стали на 0,1 Тл, шум становится сильнее на 8 дБ. Трансформаторный сердечник может также попасть в резонанс с колебаниями от магнитострикции, да еще и с гармониками вибраций в магнитопроводе. Если магнитопровод или детали трансформатора угодят в резонанс с данными гармониками, то диапазон шума с ярко выраженными пиками охватит кратные гармоники удвоенной сетевой частоты. Экспериментально подтверждено, что гармоники вибраций магнитопровода особо ярко выражены при высоких значениях магнитной индукции, когда происходит переход нелинейного участка кривой намагничивания при наличии обилия гармоник магнитострикционных вибраций. Одна из главных составляющих этого шума в трансформаторе принадлежит поперечным колебаниям листов. Эти отчетливые вибрации возникают вследствие различия листов по длине и толщине, в итоге коэффициенты удлинения для каждого листа различны, а это ведет к изменению зазора сочленений в функции мгновенных значений индукции. Это ведет к перераспределению во времени магнитных потоков между соседними листами, и в итоге получаются поперечные вибрации листов. Магнитный поток изменяется во времени, а вместе с ним и степень насыщения ферромагнетика. Кривая намагниченности искажается, и как следствие, появляются высшие гармоники и шум магнитострикции. Важно, что длина сердечника изменяется уже не только от магнитострикции, но и под действием магнитных сил, которые возникают при переходе магнитного потока от пластины к пластине. Так получается тогда, когда параллельно расположенные пластины отличаются магнитной проницаемостью. Экспериментально подтверждено, что как продольные, так и поперечные колебания листов порождают вибрации и шум приблизительно одинаковой интенсивности. Поэтому, даже если полностью подавить один из источников шума трансформатора, общий шум не снизится более чем на 3 дБ. Реакторы, дроссели, имеющие конструктивные воздушные зазоры, отличает шум, вызванный именно магнитными силами. Между двумя частями, разделенными зазором, возникают переменно силы притяжения с удвоенной частотой намагничивания. Шум, вызываемый электродинамическими силами в обмотках трансформатора, работающего под нагрузкой, как правило довольно тих, если отсутствуют осевые люфты, как это свойственно для упругой прессовки обмоток. Поэтому от нагрузки уровень этого шума трансформатора практически не зависит. Данное положение позволяет нормировать уровень шума трансформатора. Однако характер и величина нагрузки все же связаны с магнитной индукцией в трансформаторной стали в процессе работы, поэтому уровень магнитного шума с мощностью нагрузки все же связан. Надеемся, что эта небольшая статья позволила неискушенному читателю получить ответ на вопрос, почему же гудит трансформатор. Это интересно: Как узнать мощность и ток трансформатора по его внешнему виду Андрей Повный Главный редактор сайта Электрик Инфо. Инженер-электрик с опытом работы на промышленных предприятиях, преподаватель спецдисциплин в колледже. Профиль автора Источник: http://electrik.info