Как с помощью Ардуино безопасно управлять нагрузкой на напряжении 220 вольт

Для системы «Умный дом» основной задачей является управление бытовыми приборами с управляющего устройства будь то микроконтроллер типа Ардуино, или микрокомпьютер типа Raspberry PI или любое другое. Но сделать этого напрямую не получится, давайте разберемся как управлять нагрузкой 220 В с Ардуино.

Для управления цепями переменного тока средств микроконтроллера недостаточно по двум причинам:

1. На выходе микроконтроллера формируется сигнал постоянного напряжения.

2. Ток через пин микроконтроллера обычно ограничен величиной в 20-40 мА.

Мы имеем два варианта коммутации с помощью реле или с помощью симистора. Симистор может быть заменен двумя включенными встречно-параллельно тиристорами (это и есть внутренняя структура симистора). Давайте подробнее рассмотрим это.

Управление нагрузкой 220 В с помощью симистора и микроконтроллера

Внутренняя структура симистора изображена на картинке ниже.

Тиристор работает следующим образом: когда к тиристору приложено напряжение в прямом смещении (плюс к аноду, а минус к катоду) ток через него проходить не будет, пока вы не подадите управляющий импульс на управляющий электрод.

Я написал импульс не просто так. В отличие от транзистора тиристор является ПОЛУУПРАВЛЯЕМЫМ полупроводниковым ключом. Это значит, что при снятии управляющего сигнала ток через тиристор продолжит протекать, т.е. он останется открытым. Чтобы он закрылся нужно прервать ток в цепи или сменить полярность приложенного напряжения.

Это значит, что при удержании положительного импульса на управляющем электроде нужно тиристор в цепи переменного тока будет пропускать только положительную полуволну. Симистор может пропускать ток в обоих направлениях, но т.к. он состоит из двух тиристоров подключенных навстречу друг другу.

Управляющие импульсы по полярности для каждого из внутренних тиристоров должны соответствовать полярности соответствующей полуволны, только при выполнении такого условия через симистор будет протекать переменный ток. На практике такая схема реализована в распространенном симисторном регуляторе мощности.

Как я уже сказал микроконтроллер выдает сигнал только одной полярности, для того чтобы согласовать сигналу нужно использовать драйвер построенный на оптосимисторе.

Таким образом, сигнал включает внутренний светодиод оптопары, она открывает симистор, который и подает управляющий сигнал на силовой симистор T1. В качестве оптодрайвера может быть использован MOC3063 и подобные, например, на фото ниже изображен MOC3041.

Zero crossing circuit – цепь детектора перехода фазы через ноль. Нужна для реализации разного рода симисторных регуляторов на микроконтроллере.





Если схема и без оптодрайвера, где согласование организовано через диодный мост, но в ней, в отличие от предыдущего варианта нет гальванической развязки. Это значит, что при первом же скачке напряжения мост может пробить и высокое напряжение окажется на выводе микроконтроллера, а это плохо.

При включении/выключении мощной нагрузки, особенно индуктивного характера, типа двигателей и электромагнитов возникают всплески напряжения, поэтому параллельно всем полупроводниковым приборам нужно устанавливать снабберную RC цепь.

Научитесь разрабатывать устройства на базе микроконтроллеров и станьте инженером умных устройств с нуля: Инженер умных устройств

Полезные статьи:

Как происходит преобразование аналогового сигнала в цифровой

Дистанционное управление микроконтроллером: ИК-пульт, Arduino, ESP8266, 433 мГц

10 интересных проектов для Arduino

Самые популярные датчики для Ардуино

Реле и Ардуино

Для управления реле с Ардуино нужно использовать дополнительный транзистор для усиления тока.

Обратите внимание, использован биполярный транзистор обратной проводимости (NPN-структура), это может быть отечественный КТ315 (всеми любимый и всем известный). Диод нужен для гашения всплесков ЭДС самоиндукции в индуктивности, это нужно чтобы транзистор не вышел из строя от высокого приложенного напряжения. Почему это возникает, объяснит закон коммутации: "Ток в индуктивности не может измениться мгновенно".

А при закрытии транзистора (снятии управляющего импульса) энергии магнитного поля накопленной в катушке реле необходимо куда-то деваться, поэтому и устанавливают обратный диод. Еще раз отмечу, что диод подключен в ОБРАТНОМ направлении, т.е. катодом к плюсу, анодом к минусу.





Такую схему можно собрать своими руками, что значительно дешевле, плюс вы можете использовать реле, рассчитанное на любое постоянное напряжение.

Или купить готовый модуль или целый шилд с реле для Ардуино:

На фото изображен самодельный шилд, кстати, в нем использованы для усиления тока КТ315Г, а ниже вы видите такой же шилд заводского исполнения:

Это 4-канальные шилды, т.е. вы можете включать целых четыре линии 220 В. Подробно о шилдах и реле мы уже выкладывали статью на сайте - Полезные шилды для Ардуино

Схема подключения нагрузки на напряжении 220 В к Ардуино через реле:

Заключение

Безопасное управление нагрузкой переменного тока подразумевает прежде всего безопасность для микроконтроллера вся описанная выше информация справедлива для любого микроконтроллера, а не только платы Ардуино.

Главная задача – обеспечить нужные напряжение и ток для управления симистором или реле и гальваническая развязка цепей управления и силовой цепи переменного тока.

Кроме безопасности для микроконтроллера, таким образом, вы подстраховываете себя, чтобы при обслуживании не получить электротравму. При работе с высоким напряжением нужно соблюдать все правила техники безопасности, соблюдать ПУЭ и ПТЭЭП.

Эти схемы можно использовать и для управления мощными пускателями и контакторами. Симисторы и реле в таком случае выступают в роли промежуточного усилителя и согласователя сигналов. На мощных коммутационных приборах большие токи управления катушкой и зависят непосредственно от мощности контактора или пускателя.

Смотрите также:

7 учебных курсов по работе с Ардуино, онлайн обучение проектированию и конструированию электронной аппаратуры

Алексей Бартош