

54418.21 — 2011 (**61400-21**: **2008**)

. .

2 1

,

,

IEC 61400*21:2008

Wind turbines — Part 21:

Measurement and assessment of power quality characteristics of grid connected wind turbines (MOD)

```
27
               2002 .
                            1&4-
                                                 1.0 — 2004 «
                                                   039 «
     2
     3
                        28
                                   2011 . 341-
    61400-21:2008
                                                                  21.
                                                                             » (IEC 61400-21:2008 «Wind
turbines—Part 21: Measurement an] assessment of power quality characteristics of grid connected wind turbines»)
                                                    1.5-2004 (
                                                                  3.5).
     5
```

I

, 2012

1		1
2		2
3		2
4		4
5		6
6		6
6.1		6
6.2		
6.3		6
6.3.1		6
6.3.2		6
6.3.3		_
6.4		
6.5	,	
6.6		
6.6.1		
6.6.2		
6.6.3		
6.7		_
6.7.1		
6.7.2		
6.8		_
6.9		_
7		
7.1		
7.1.1		
7.1.2		
7.1.3		
7.2		
7.3		
7.3.1		_
7.3.2		
7.3.3		15
7.3.4		17
7.4	,	
7.5		20
7.6		21
7.6.1		21
7.6.2		21
7.6.3		22
7.7		22
7.7.1		22
7.7.2		22
7.8		23
7.9		24
8		24
8.1		24
8.2		24

54418.21-2011

8.2.1						 		 24	
8.2.2						 			
8.2.3						 			
8.3		,							
	()				 			88
	()				 			88 88
	()		,					58
	()					*		
			/		,				
						 		 48	
						 		 49	

61400*21:2008, (). 61400*21:2008 , , , ,

•

```
54418.21—2011
( 61400-21:2008)
```

.

21

Renewable power engineering. Wmd power engineering. Wmd turbines. Part 21. Measurement and assessment of power quality characteristics of grid connected wind turbines

-2012-07-01

() .

· ,

, r- , .

```
U,, 8
                                U,, £1 :
                                  1 < U_n £ 35:
                                 U_{\rm w} > 35 .
     2
                 9000-2001
                    17025-2306
                51317.3.3—2008 (
                                       61000-3-3:2005)
                                                                                                   16
           ),
                51317.3.12—2006 (
                                         61000-3*12:2004)
                         16 .
                                              75
                                                                  ),
                51317.4.7—2008 (
                                       61000-4-7:2002)
                51317.4.15—99 (
                                       61000-4-15-97)
            51317.4.30—2008 (
                                  61000-4-30:2008)
            51237—98
           1983-2001
           7746-2001
            13109-97
           30372-95
            50392-92
                   , 8
     3
                                                                   51237,
                                                                                 30372.
                                                                                               51317.4.30.(1).
     3.1
                                           ) (continuous operation (for wind turbines)]:
     3.2
                                                               ) [cut-in wind speed (for wind turbines)]:
```

```
) [flicker coefficient for continuous
      3.3
operation (for wind turbines)]:
     P<sub>s/ f>e</sub>—
                            );
     S,, —
                     (10)
                                           (2)
      3.4
                                                                     ) (flicker step factor (for wind turbines)]:
                                                    1
130
   7^
     Pti.oc —
      3.5
                                                               ) [nraximum measured power (for wind turbines)]:
      3.6
                                                                           ) [network impedance phase angle (for
wind turbines)]:
   X*—
                                           ) [normal operation (forwind turbines)]:
      3.8
                                         ) [operational mode (for wind turbines)]:
      3.9
                                             ) [output power (for wind turbines)]:
                                  (
      3.10
                                                       [point of common coupling. PCC]:
      1
      2
      3.11
                                                     ) [power collection system (forwind turbines)]:
                                ».
```

```
54418.21-2011
```

```
3.12
                                              (
                                                        ) [rated apparent power (for wind turbines)]:
3.13
                                    ) [rated current (for wind turbines)]:
                                       ) [rated power (for wind turbines)]:
3.14
                                         ) [rated wind speed (for wind turbines)):
3.15
                          ) [standstill (forwind turbines)]:
3.16
3.17
                     ) [start-up (forwind turbines)]:
3.18
                                          ) [switching operation (for wind turbines)]:
3.19
                                         [turbulence intensity):
3.20
                                                           ) [vottage change factor (for wind turbines)]:
                                          ) - V3 -
_{\mathrm{mift}} U_{u}
3.21
                                           ) [wind turbine. WT):
3.22
                    [wind turb
                                     terminals]:
  3.23
                       {validation}:
              9000 - 2001. .8.5}
4
                                                        . %:
```

```
. %;
                                    (50
                                             60 ).
                                                                                           50 ;
                    <del>-8</del>
fy.t-
i_m(t) —
Mv*) —
,
MVn) —
L<sub>St</sub>—
N,on—
                                                                                                 10
N<sub>fMm</sub> — /,,* —
                                                                                                  120
                                                                                       15 /:
                                                                                        ;
N_{mM < t}
                                                                                                 0.2 ). :
                                                                                                  60 ), ;
Pstm-
Q—
R_u — S^* —
S_{k te}—
S,,—
                                                                               .%/"( .
                                                                                                     51317.4.7.
 3.31);
  (0-
                  . :
                                  . 8;
U
   mar—
  * mVt
```

```
54418.21-2011
```

```
U" —
       Uunui —
       Ugy"—
                                             , /:
       V<sub>f</sub>---
       W, -
      Z, –
      Z_2 -
      5
                                                     (A/D converter);
                                                   (DFT);
                                   (HV);
                                  (LV);
                                   (MV);
                                                   ).
      6
      6.1
                                                                  (6.3— 6.4).
                (6.2),
                                                                                             (6.6 — 6.7),
                              (6.5),
                                              (6.8—6.9).
      6.2
                         ", S", U", /".
      6.3
      6.3.1
                                                                                                                ),
                                                       6.3.2 6.3.3.
      6.3.2
        99-
                                                                                                          = 30 . 50°. 70
                                                                                                                          - 6;
7.5; 8.5
             10
                                                                                      10
                                                                         ).
```

```
= 0.
                                                       F(v) = 1 - \exp\left(-\frac{\pi}{4}\left(\frac{v}{v_a}\right)^2\right).
       6.3.3
       a)
       b)
                                                                                   1).
                                                            2.3:
                                                                                                 10
                                          10
                                        W_{120m}
                                                                                                  2;
V^* = 30^{\circ}.50^*.70^* 85;
                                                            k_u(Y^*)
30*. 50*. 70* 85*.
                             Q* 0.
       1
       2
                                 N,2am
                       W,om
       3
                                                                                                                            10
       6.4
                                                                               ).
                           /,,
                                                                                        0.10.20......100% ".(0.10.
20......100 % —
                                    50
                                                                                                                  2
          51317.4.7.
```

2 9 , *51317.4.7.* .

, , (= 0).

.

6.5

. 1.

; a) 0.1 " 0.3 ";

b) 0.9 ". , , , (1— 6. . 1).

1—

	-)	(-		
1 —				
-	0.90 1 0.05	0.90 ± 0.05	0.5 ± 0.02	
2 —				
-	0.50 ± 0.05	$0,50 \pm 0.05$	0.51 0.02	
3—				-
	0,20 1 0.05	0.20 ± 0.05	<i>0</i> 2 ± 0.02	"LT
4 —	0.90 1 0.05	0.95 ± 0.05	0.5 ± 0.02	
5 —	0.50 1 0.05	0.75 ± 0.05	0.5 ± 0.02	
6 —	0,20 ± 0,05	0.60 ± 0.05	02 ± 0.02	

1		,		-									-
2				,		1	4						,
6.6 6.6.1													60
6.6.2		6	600 2				0.	& 2 .					60
										, 10			
10%-													
6.6.3	0.	.2 .									,		
						,		1	00%	20%			
1.	20 %	%.						•	0070	207	O	2	-
0.2											,		
	_	_											
			,			,		,					
		, %	6										
			 1	2	3	 4	5	6	 7 (6)		

1—

6.7

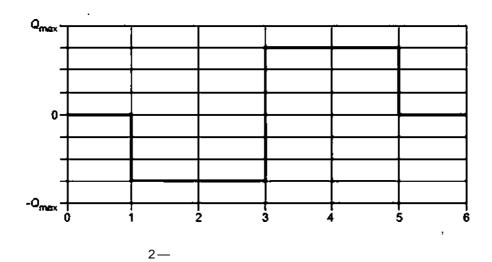
6.7.1

8

0,10.... 90.100%.

6.7.2

< .


, 0.10.20.... 100 %

1 .

1 50 %

2.

0,2 .

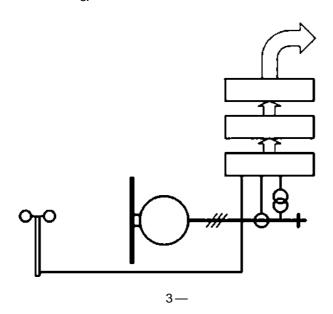
_

,

6.8

·

.


6.9

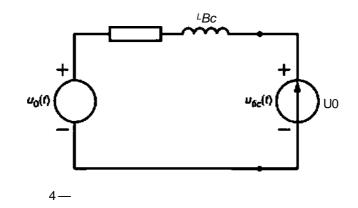
. . 1 10

```
7
      7.1
                                                                        7.2 — 7.9
                                                                                                  (7.2),
          {7.3 — 7.4).
                                                               (7.5).
                                                                                                 (7.6 — 7.7).
                                  (7.8 — 7.9).
                             15 / .
                                                                                                              1).
                                                                                 15
                                                             2).
      1
                                                                                   15 / .
      .
2
                                                                     15 /
                                                                                                                0,2 )
                                                                      15 /
                       15 /
8.2
                                              ( . 7.3.3.
                                                                    5)
      7.1.1
                                                                                               8
                                                                                                (7.3—7.4).
                {7.6 — 7.7)
                                                               (7.5).
      7.1.2
                                                                       1).
                                                                                                  51317.4.7.
3.3.1).
                                                                      5 %
                                 50-
        10
                                                                                                                   11
```

		,						
0.2	.2		± 1%. 0,2 %					0.2 .
	±10% 2 %.			if	8	,	10	
,	10 . 5.7.		,					51317.4.30. - -
	,			,		,		
		, , ,	, . 513	2. 17.3.12.	3).			-
,			5					
	1 ,				•			-
	2	,		,		7.6	5.1	-

7.1.3 3.

54418.21-2011


() (). S1317.4.7). 12 2. 2— 1983 1.0 7746 1.0 10.5 / (21 1% (31 3. 20 2.5 ±1 /. 7.2 6.2 7.3 7.3.1 7.1.2 (). 7.32. (7.3.3) 13

(7.3.4).

•

.

7.3.2 4.

 $t'_0(f)$, R_{κ} , L^{Λ} , $S_n(Q)$

>(0 = (2)

,-

 $+a_0$ (3)

 R_u L

$$tg(\psi_{h}) = \frac{2\pi \cdot f_{g} \cdot L_{Rc}}{R_{Ac}} = \frac{X_{fsc}}{R_{rc}}. \tag{4}$$

$$f_{g} - \tag{50 60 }). \tag{50}$$

, S_{Aft}/S_{,,,} 20 — 50. 6 400 64 51317.4.15. , 5%. 7.3.3 (*. ,) 6.3.2

· (,,,),
· (. ,)

a) (. 1};

c) 7.1.3; d) , -

, 51317.4.15(. 7.3.1). , 3. - 2.

400 (. 2).

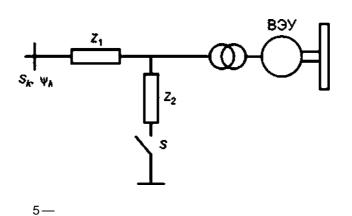
, 6.3.2 . 54418.21-2011

 $\cdot \frac{S_{k, 6c}}{S_o}. \tag{6}$

 S_{n} — ; S_{ktic} — ; (. - $\frac{1}{2}$. $\frac{1}{2}$

 $f_{ij} \otimes \star \left(-\frac{\pi}{4} \left(\frac{v_{i}-0.5}{v_{a}}\right)^{2}\right) - \exp\left(-\frac{\pi}{4} \cdot \left(\frac{v_{i}+0.5}{v_{a}}\right)^{2}\right),$ (7)

- { *. vj 99- (. - 4 5) , 7)—9). ; { <)


 $Pr\{_{C < X}\}, \pm L - \cdots$ $\underbrace{\mathbb{E}_{N} V - N_{m} < }_{1}$ (10)

```
99-
        8)
                                            4) — 8)
          12
                                                                                                              12
                                                                      2
        1
     ,. 2 3—
,2. 03, 023—
                                                                                               51317.4.15.
                                    o_{fe}(f).
                                                                                                                    35
                                                   <
                          400
                                                                                                         800
                                                                                          800
                                  ^,( ).
        3
                                                                                                                                       ( .4.1).
                              99-
                                       6.3.2
                                               10
           / . 7.6
                         / . 8,6
                                                          oooroorciaoiaio.
                                                                                                  15
                                                                                             15
                                                                                                                             99-
v_a \ll 6 /,
                   96-
                          , 91-
                                        83-
                                                                                        / . 8.5 /
                                                                                                          10 /
                                                                99-
                                                                                                                         7.5 / . 8.5 /
                                                                                                                                                   10 /.
                                                                        v<sub>t</sub>- 7.5 / . 8.5 /
                                  99-
                                                                                                    10 /,
                                                                                                                       15 /
                             c(y_k, v_i)
                                            v, > 6 /.
        7.3.4
                                                                                            6.3.3,
                                                    W_{\text{IOm}}
                                                                    : N_{\text{i}} * = 10 I_{12} , = 120;
: W_{\text{iart}} * 1 W_{120\text{m}} = 12;
       a)
       b)
                                                                             : W_{10m} = 10 \quad W_{120m} = 120.
        c)
```

```
( )
       ,( )
                           63.3.
                                                                        ^( )
                                                                                 / ( ").
.2
                            6.3.3
                                          6.3.3 )
      6.3.3 ).
                              6.3.3 )( .
                                                             1 6.3.3).
                                                                    kjy*)
   »)
 1)
 2)
 3)
 4)
                                                        7.1.3.
                                                         ±2 /
                                                                                                3,
                                                                                                               2.
                                                                           1500
                                                                                                        1).
     10-20
 1)
                                                                                                i/_{ft}(f).
 2)
                                                             u_{te} = 0
                              51317.4.15
     15
 3)
                                                        / ,( *)( .
                                                                                      2 3)
                                                    1 S*.ite
                                                               .31
                                                                                                                    (11)
                                                   130 ', *
                                                            ( )
  4)
                                                                                                                    (12)
{
                                                            4).
 5)
                           1£
 1
                                          1500
                                                                          2 7.3.3).
 2
                                                                                                             51317.3.3.
                                                .4.
```

```
3
4
                   .4.
      7.4
       6.4.
      10
                                                                   (
                                                                                                                  0.10.20.
.... 100 %
                                  6.4)
                         10 %-
                                                                                                    9
             51317.4.7.
                                                                                                   51317.4.7
                                51317.4.7.
                                                                      50
                10
                                                                                60
                                                                                          <del>--</del>12
                                                                   ( .
                                                                                     ).
                                                             0.1 % /,,,
                                                                                                    )
         ( .
                      51317.4.7).
                                                   50-
                                                      5.6( .
                              51317.4.7.
                                                                                                                      (13)
                                                2
                                          51317.4.7.
                              51317.4.7.
                                    200 ).
                                                       10-
10 %-
              10
                                                                                                   51317.4.7.
                                                             10
                                               51317.4.7).
                                                                                                               51317.4.7.
           5.6.
```

7.5

coitpui 2, , .

z, -

. $S. \qquad Z_2 \qquad . \\ , \qquad 1. \qquad . \\ Z, \qquad Z_2, \qquad , \\$

6. S . S .

,

```
Напряжение
                                                                    ± 10 %
                                       ±5%
                                                                           20 MC
                                                20 MC
                                                         ± 5 %
                              6—
                                                                                      : )
                                                                                             0.1 "
                                                                                                        0.3
                                                                                                                  ):
       0.9 "(
)
                                                                      ).
    7.6
    7.6.1
                          6.6.1
                                                                  600 ).
                                                                                          (
                                                                                                         60 )
                                                600 (
02 (
                0.2 ).
                                    10
                                                                                           (
       1 /)
                                                      15 / .
                                                                    10
                                                                                           7.1.3.
                                                        0.2
                                                                  60
           0,2
                 600
           600
                                                                                        3.
                                                                        2.
    7.6.2
             6.6.2.
                                                                                                          10%
                                   10
        50 %
                                                                                                             0.2
                                                                                       3.
                                                                                 2.
                                                                                        1
```

Электротехническая библиотека Elec.ru

54	41	R	21	l—20°	1 '	1
\mathcal{I}	т,	U				

•		,						,				
	7.6.3	-					6.	.3.3				-
					10 .							
												100
20 %		20%(2	_)			1. 90	%	
												0.2
						,			2.	3.1		-
8 .			,						,			-
	7.7 7.7.1											
						6.7.1.						
				,								
			, «									
			1	•	1		10%-	1				, -
		1	'					0. 10. 90				100%
).	(0.10.90						3.	-
	7.7.2						, 2.				O.	
					6.7.2	. ,	,		,			-
•												

1	. 1	10 %- 1	
).	0,10. 90100%	0.10.90	100% ,
7.8	0.2		0.2
	,		8
1% 20 .	, 100 %	· · · · · · · · · · · · · · · · · · ·	_
1 % 20 .	, 100 % $f_{mM'}$,	_
	— 20 .	0.1	100 % 100%
	— 20 . ,	0.1	
			- -

		5 %			-
		<i>t</i> ^+1 .			-
		-1 .			-
	7.9			6.9.	
	,	•	6.9		-
	0		1	0 /.	-
8	. 8	, ,		,	-
		, 1 .			
			0.2 .		-
		(>0).	0.9 1.1 U).	, , 3	-
			2.	3	_
	8				
	8.1			,	-
	·		,		-
		,	,		-
			()	. ()	_
			± 1)	, ,	-
	8.2		•		
	8.2.10			,	, -
			•		(14)
					(15)

51317.3.3), d£ (16)d— (41. 8.2.2 99-(17) (\ *,) — V_a ν, 7.3.3. <\pre><\pre>* > *) • S.,)² (18) (, v,) — 8.2.3 8 . (19)"=18 '*/(¥*) s'". (20), (\) — 1).

7.3.4.

54418.21-2011

· ·

:

9,31 ,3.2 (21)

 $^{\circ}$ -2 π 120*1 • [kf i W*) S,,/) (22)

 $tf=-100A_{,,}(n>|4)$ (23)

d — .%; -(%)— .

7.3.4.

1 (19) (20) .4.2 600 7200 . 2 (21) (22) (19) (20) ,

8.3 ,

. (5)

• (24)

3 , . .

3— 8 {24) [5]
<5	1,0
S&hi 10	1.4
/»> 10	2.0

•

. (24)

· ` ´

. (24) = 2.

		()			
				·	- -
	, . 	5.10.			,
,			,	,	- - -
•	,				
	,				
(/)					
· · (/)					
/)	(/	-			
		-			
		-			

	,
·	
	-
	-
	2
	, 8 -
,	,
	(),
! .	
. ,	
. v _n . '	
. S,,	
./,,.	
./,,.	
./, U _n , 8	

.2.1		
		•
		.0=0

, if .	30*	50'	70*	9S*
. v _t , /	* · · ·			
6.0				
7.5				
8.5				
10.0				

.2.2

.0 = 0

.

$ m W_{10h}$				
.	30	50*	70*	85*
/(*)				
(*)				

W _{ia} *				
N _{12tm}				
.	30	50*	70*	85*
/(*)				
(*)				

$W_{ICw}>$				
W _{i20m}				
,	30*	50*	70*	85*
, (*)				
()				

. (/,, 10.20......100% ".

Q=0

.3.1										
	0	10	20	30	40	so	70	80	90	100
			> .%						1,,.%	V*
2										
3										
4										
5										
6										
7										
8										
9										
10										
11										
12										
13										
14										

^%	0	10	20	30	40	50	70	80	90	100
									V*	
15										
16										
17										
18										
19										
20										
21										
22										
23										
24										
25										
26										
27										
28										
29										
30										
31										
32										
33										
34										
35										
36										
37										
38										
39										
40										
41										
42										

	0	10	20	30	40	SO		70	80	00	100
N							<i>t_n.</i> %			v%	V*
43											
44											
45											
46											
47											
48											
49											
50											
.%											

.3.2

	0	10	20	30	40	SO	70	80	90	100
/.			v%					v%	'_*	V*
75/90										
125/150										
175/210										
225/270										
275/330										
325/390										
375/450										
425/510										
475/570										
525/630										
575/690										
625/750										
675/810										
725/870										
775/930										
825/990										

^%	0	10	20	30	40	50		70	80	90	100
1.							t,,.%				V*
875/1050											
925/1110											
975/1170											
1025/1230											
1075/1290											
1125/1350											
1175/1410											
1225/1470											
1275/1530											
1325/1590											
1375/1650											
1425/1710											
1475/1770											
1525/1830											
1575/1890											
1825/1950											
1675											
1725											
1775											
1825											
1875											
1925											
1975											

.3.3

^.%	0	10	20	30	40	SO	00	70	80	90	100
,>							1 .%			'*	
2.1											
2.3											
2.5											
2.7											
2.9											
3.1											
3.3											
3.5											
3.7											
3.9											
4.1											
4.3											
4.5											
4.7											
4.0											
5.1											
5.3											
5.5											
5.7											
5.9											
6.1											
6.3											
6.5											
6.7											
6.9											
7.1											
7.3											
7.5											

54418.21—2011

^%	0	10	20	30	40	50	70	80	90	100
1									V*	
7.7										
7.9										
8.1										
8.3										
8.5										
8.7										
8.9										

.4

:

-	
. § Pst t Pa	

. 605	
, = & /	

0.2

• 02	
· 0	

.5.2

: 10%

.8. .8. .5.3

:

.6.1

,%

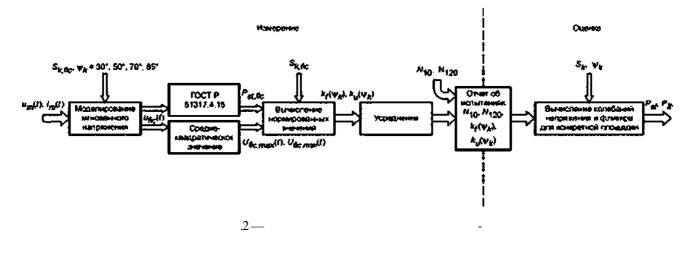
.6.2

:

0

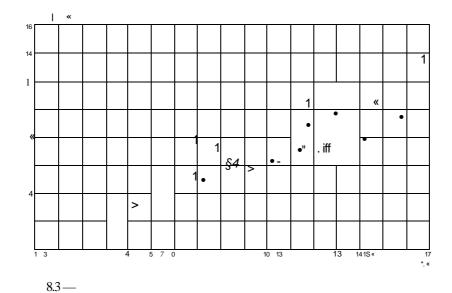
,%						
,						

.9. .10. 50%). .7


		,
*		

.8

	10	1	10
,			
,			


()

.1 .1. .1 Ouerra ra = 8, 7,5, 8,5 x 10 w/c \$ Kife- Wa = 30", 50", 70", 65" FOCT P 51317.4 15 مزابات ۱۹۶ .1— .1 $s_m(t)$ 1) $u_m(t)$, 15 /: 2) Ugjf; S* u^ft) 3) 51317.4.15: (*). 4) P,i. S*.; 5) (99-6) (*. v₄) (. .1) .2 .2. .2 (1) 1) $i_m(t)$ 2) S_t ;

 N_{10m} 120 . (. .2)

. , $(*. v_4).$. $* = 50^{\circ}.$

(*, ») () 1 /: W, (<): 99- (v_A) . v^jf , = 3 /. 15 /. (. v_A) 15 /. .1. f_y , $v_4 = 6; 7.5; 8.5:10 /.$ /, (, N_m , 15 /

,	»		V,*	7.5 /	Vr* 8.5 /	
, /	N_m ,		, /	7.5 /	8.5 /	10 /
3—<4	30	5.38	11.64	8.21	6.64	4.98
4—<5	36	6.45	12.57	9.44	7.83	6.02
5—<6	45	8.06	12.37	10.04	8.59	6.80
—<7	3 3	5.91	11.26	10.04	8.91	7.32
7—<8	42	7.53	9.58	9.53	8.83	7.56
)	33	5.91	7.67	8.65	8.41	7.56
9—<10	33	5.91	5.60	7.52	7.74	7.34
10—<11	69	12.37	4.15	6.29	6.88	6,93
11—<12	87	15.59	2.62	5.07	5.94	6.39
12—<13	60	10.75	1.82	3.95	4.97	5.75
13—<14	45	8.06	1.11	2.97	4.05	5.07
14—<15	45	8.06	0,65	2.16	3,21	4.37
	558					

w, f_{m-}

.2— tv,

,/	. /	". 7.S /	8.S /	" 10 /
3—<4	2.165	1.527	1.236	0.927
45	1.949	1.464	1.214	0.933
5—6	1.533	1.245	1.065	0.843
6—7	1.904	1.696	1.507	1.237
7—8	1.273	1.267	1.173	1.005
89	1.297	1.462	1.423	1,278
9—<10	0.980	1.272	1.308	1,241
10—<11	0.335	0.509	0.557	0.561
11 -< 12	0.181	0.325	0.381	0.410
12—<13	0.169	0.367	0.463	0.535
13—<14	0.138	0.366	0.502	0.628
14—<15	0.081	0.267	0.398	0.542

,

, 1. ..

. - ,

v _a . /	6.0	7.5	8.5	10.0
$\sum_{i=1}^{N} N_{m}$	454.40	467.99	457.64	424.60

	,/	(<) 8/	(<) 7,5 /	(<) .5 /	(<)
11.495	13,4	1.0000	1.0000	1.0000	1.0000
11.379	134	0.9997	0.9992	0.9989	0.9985
11.298	134	0.9994	0.9984	0.9978	0.9970

. 4

. 4					
	. /	(<)	(<) 7.6 /	Pt fc <) .5 /	(<) 10 /
10.584	146	0.9991	0.9976	0.9967	0.9956
10.472	119	0.9989	0.9971	0.9958	0.9943
10.444	146	0.9985	0.9964	0.9950	0.9933
10.418	119	0.9983	0.99\$8	0.9941	0.9920
10.418	103	0.9979	0.9951	0.9933	0.9911
10.384	146	0.9972	0.9940	0.9921	0.9898
10.308	146	0.9970	0.9935	0.9912	0.9885
10.286	103	0.9968	0.9929	0.9903	0.9872
10.280	119	0.9961	0.9918	0.9891	0.9859
10.104	103	0.9957	0.9911	0.9883	0.9849
10.059	142	0.9950	0.9900	0.9871	0.9836
9.931	142	0.9948	0.9894	0.9862	0.9823
			•		
8.882	129	0.9906	0.9788	0.9713	0.9620
8.858	129	0.9902	0.9780	0.9703	0.9608
8.846	121	0.9898	0.9772	0.9693	0.9595
8.836	113	0.9895	0.9765	0.9683	0.9582
8.831	12.1	0.9891	0.9758	0.9674	0.9573

.5—

V,-	30*	50-	70*	85*
. /				
6.0		8.9		
7.5		10.1		
8.5		10.3		
10.0		10.4		

54418.21-2011

9915 /.

66.

15 / 3 /.

3 .

15 / 15 /.

66.

9966.

15 / .

15 / .

15 / .

15 / .

15 / .

V*. /	6.0	7.5	8.5	10.0
(V<3 /). %	17,8	11.8	9.3	6.8
(/< <15/),%	81.4	83,9	82.0	76.1
Pr(v> 15 /). %	0.7	4.3	8.7	17.1
,%	99.2	99.2	99.2	99.2
,%	98.4	94.8	90.5	82.2
_				•

3 15 /. ,

.4 .4.1

 $= C < V^*) \qquad S^* \qquad , \tag{.1}$

S,,— . (*)

 $S^* S_n$ (.2)

.4.2

•

$$lf = 2.3 \bullet tfmai^{32}$$
 (-4)

SLISC (5)

*)

$$MV^*$$
) = $\frac{100-S_{100}}{100-S_{100}} \left(\frac{T_p}{23}\right)^{\frac{1}{3}} \cdot P_{st. Rc}$. < .7)

8.4.3

$$*Mv*>- {-}^{\$}_{S^*.fK}$$
 <.8)

, (.8)

()

,

,

· ,

, .

: a) .

b) .

. ; c) ,

· (, 2).

;):

$$u_{a,\cos} = \frac{2}{T} \int_{t-T}^{t} u_{a}(t) \cos(2\pi f_{1} t) dt, \qquad (.1)$$

$$= / (08 < (2 \land) .$$
 (-2)

f\— .

$$u_{a1} = \sqrt{\frac{u_{a,\cos}^2 + u_{a,\sin}^2}{2}}.$$
 (.)

:

$$u_{1 \cdot . \cos} = \frac{1}{6} \left[2u_{a,\cos} - u_{b,\cos} - u_{c,\cos} - \sqrt{3} \left\{ u_{c,\sin} - u_{b,\sin} \right\} \right]. \tag{4}$$

$$u_{1*,sin} = \frac{1}{6} \left[2u_{a,sin} - u_{b,sin} - u_{c,sin} - \sqrt{3} \left(u_{b,cos} - u_{c,cos} \right) \right]. \tag{5}$$

$$i_{1*,\cos} = \frac{1}{6} \left[2i_{a,\cos} - i_{b,\cos} - i_{c,\cos} - \sqrt{3} \left(i_{c,\sin} - i_{b,\sin} \right) \right]. \tag{.}$$

$$i_{14,\sin} = \frac{1}{6} \left[2i_{a,\sin} - i_{b,\sin} - i_{c,\sin} - \sqrt{3} \left(i_{b,\cos} - i_{c,\cos} \right) \right]. \tag{.7}$$

$$P_{1*} = \frac{3}{2} \left(u_{1+,\cos i_{1+,\cos }} + u_{1+,\sin i_{1+,\sin }} \right), \tag{8}$$

54418.21—2011

.= +<>.) (.10)

:

$$<,... = \frac{...}{\sqrt{\rho_{1.}^2 + Q_{1.}^2}}$$
 (.13)

()

,

. 1

.1				
	> »-			
9000—2008		9000:2005 « »		-
/ 17025—2006		/ 17025:2005 « »		-
51237—98	_			
1983—2001	_			
7746—2001	-			
51317.3.3 — 2008 (61000*3-3:2005)	MOD	61000-3-32005 «		3-3:
		16 »		-
51317.3.12—2006 (61000*3*12:2004)	MOD	61000-3-12:2004 « . 12		3.
		, 16 »		75
51317.4.7 — 2008 (61000-4-7:2003)	MOD	61000-4-7:2008 «		4-7. - -
		»		
51317.4.15—99 (61000-4-15—97)	MOD	61000-4-15:1997 «	15.	4.
51317.4.30—2008 (61000-4-30:2006)	MOD	61000-4-30:2008 « 4-30. »	·	().
30372 — 95/ 50397—92	NEO	60050-161:1990 « 161: »		
— ; — ; MOD— ; NEO— ;				

 [1] 60050-161:1990
 . 161:

 [2J 61400-12-1:2005
 . 12-1.

 [3] 62008:2005
 . 3-6. .

 [4] 61000-3-6:2008
 . 3-7. .

 [5] 61000-3-7:2008
 . 3-7. .

621.396/.397.4:006.354 27.180 02