В.Л. Лихачев

СПРАВОЧНИК ОБМОТЧИКА АСИНХРОННЫХ ЭЛЕКТРОДВИГАТЕЛЕЙ

Электрические машины изнутри Все, что нужно знать о проводах и изоляционных материалах Секреты перемотки электро-

Профессиональная пошаговая методика разборки и ремонта Самая полная подборка схем, рисунков и таблиц

УДК 621.396.218 ББК 32.884.1 Л65

Л65

В. Л. Лихачев

Справочник обмотчика асинхронных электродвигателей. — М.: СОЛОН-Пресс, 2004. — 240 с.: ил. — (Серия «Ремонт», выпуск 72).

ISBN 5-98003-120-0

Книга «Справочник обмотчика асинхронных электродвигателей» подробно освещает назначение и классификацию асинхронных электродвигателей первой и второй единой серии, единой серии 4A, крановых электродвигателей, электродвигателей повышенной частоты и однофазных двигателей. Приведены и описаны виды обмоток и способы их изображения, схемы обмоток трехфазных и однофазных двигателей.

В книге описаны выпускающиеся в данное время обмоточные провода, их номенклатура и характеристика. Дана подробная характеристика изоляционных материалов. Описаны свойства и применение материалов для пропитки обмоток.

Приведен пересчет обмоточных данных при ремонте и перемотке асинхронных электродвигателей, пересчет обмотки на другое напряжение, пересчет трехфазной обмотки на однофазную, замена диаметров проводов (таблицы и графики).

Книга «Справочник обмотчика асинхронных электродвигателей» рассчитана на обмотчиков мелких обмоточных цехов и мастерских по перемотке электродвигателей. Данный справочник рассчитан помочь обмотчикам углубить их знания и обеспечить их справочным материалом.

«Справочник обмотчика асинхронных электродвигателей» также будет полезен обмотчикам и инженерно-техническим работникам ремзаводов по ремонту асинхронных электродвигателей и энергетикам предприятий и хозяйств.

УДК 621.396.218 ББК 32.884.1

Книга — почтой

Книги издательства «СОЛОН-Пресс» можно заказать наложенным платежом по фиксированной цене. Оформить заказ можно одним из двух способов:

- 1. Послать открытку или письмо по адресу: 123242. Москва, а/я 20;
- 2. Передать заказ по электронной почте на адрес: magazin@solon-r.ru.

При оформлении заказа следует правильно и полностью указать адрес, по которому должны быть высланы книги, а также фамилию, имя и отчество получателя. Желательно указать дополнительно свой телефон и адрес электронной почты.

Через Интернет Вы можете в любое время получить свежий каталог издательства «СОЛОН-Пресс». Для этого надо послать пустое письмо на робот-автоответчик по адресу: katalog@solon-r.ru.

Получать информацию о новых книгах нашего издательства Вы сможете, подписавшись на рассылку новостей по электронной почте. Для этого пошлите письмо по адресу: news@solon-r.ru. В теле письма должно быть написано слово SUBSCRIBE.

Введение

Основой развития хозяйства России является широкая электрификация промышленности и сельского хозяйства, способствующая ускорению технического прогресса. Только всестороннее развитие электрификации дает возможность полностью механизировать производство, широко внедрить автоматику, намного увеличить производительность труда.

Широкое распространение электрических машин объясняется простотой передачи электроэнергии на большие расстояния и удобством ее использования. От тепловых, гидравлических или атомных электростанций, на которых расположены генераторы, электроэнергия по линиям электропередачи подается на тысячи километров до места ее потребления — городов, заводов, шахт, железнодорожных магистралей. Основные потребители электроэнергии — электродвигатели — просты и надежны в работе, имеют более высокий коэффициент полезного действия, чем любые другие современные двигатели, могут быть легко установлены в нужном месте и работают, совершенно не загрязняя окружающую среду: без дыма, выделения газов и вредных выхлопов, как, например, двигатели внутреннего сгорания.

Электрические двигатели приводят в движение практически все примышленные механизмы начиная от мощнейших прокатных станов до мелких приборов, служащих для контроля и управления процессами производства. Их работа во многом определяет надежность автоматических линий, различных манипуляторов и промышленных роботов.

Важнейшую роль в электроэнергетике всех отраслей народного хозяйства играют миллионы электродвигателей. Обеспечение их надежной и бесперебойной работы — задача очень ответственная, и решить ее можно лишь при четко организованной системе ремонта. При существующей сети специализированных электроремонтных заводов большая часть электродвигателей ремонтируется в сравнительно небольших цехах, мастерских и на участках, существующих и вновь создаваемых на многих предприятиях практически во всех отраслях народного хозяйства.

Опыт эксплуатации электродвигателей свидетельствует о том, что наиболее часто повреждаемыми их частями являются обмотки и изоляция, на долю которых приходится свыше 80 % всех трудозатрат по ремонту электродвигателя.

В практической работе электромонтер-обмотчик должен уметь по определенным признакам не только устанавливать характер и причину возникновения неисправностей, но и определять способы их быстрого и качественного устранения. Для этого ему необходимо хорошо знать принцип действия и конструкцию ремонтируемого электродвигателя, процессы, происходящие при его работе, современную технологию ремонта, способы модернизации поступающих в ремонт электродвигателей, т. е. он должен обладать широким техническим кругозором и высокой профессиональной подготовкой.

Особо следует отметить, что если на крупных электроремонтных предприятиях возможна узкая специализация рабочего на определенной технологической операции, то в условиях небольших электроремонтных цехов, участков и мастерских один и тот же рабочий зачастую выполняет целый комплекс работ по ремонту обмоток, а иногда и полностью ремонтирует электродвигатель — от начала до конца. Такой специалист должен обладать обширными теоретическими знаниями и твердыми практическими навыками по всему комплексу обмоточных работ. В этом ему должно помочь предлагаемое пособие.

1. Устройство электрических машин

1.1. Назначение и классификация электрических машин

Электрические машины по назначению разделяются на генераторы, преобразующие механическую энергию в электрическую; электродвигатели, преобразующие электрическую энергию в механическую, а также специальные машины, чаще всего преобразующие электрическую энергию одного вида в электрическую энергию другого вида.

По устройству электрические машины могут быть коллекторными и бесколлекторными. Коллекторные машины чаще всего используются для работы на постоянном токе как в качестве генераторов, так и в качестве электродвигателей. Реже применяются они на переменном токе, главным образом как однофазные электродвигатели сравнительно небольшой мощности. Бесколлекторные электрические машины работают почти исключительно на переменном токе. По принципу действия их разделяют на асинхронные, используемые в основном как электродвигатели, и синхронные, применяемые в качестве генераторов или электродвигателей.

Электрические машины широко применяются во всех отраслях народного хозяйства, где существуют самые разнообразные условия работы и предъявляются различные требования. В связи с этим разработаны и выпускаются промышленностью электрические машины множества конструктивных исполнений: с горизонтальным и вертикальным расположением вала, с креплением на лапах или фланце, с различными способами охлаждения, например обдуваемые воздухом только снаружи или продуваемые также внутри, с разной степенью защиты от влияния внешней среды — открытого и защищенного исполнений, брызгозащищенные, водозащищенные, взрывозащищенные, герметичные и т. д.

На специальной табличке, которая крепится к электрической машине, указывают ее номинальные параметры, т. е. основные показатели (мощность, напряжение, ток, частоту вращения и др.), характеризующие номинальный режим работы, для которого предназначена данная электрическая машина заводом-изготовителем. Термин «номинальный» применяется также к параметрам, не указанным на щитке машины, но относящимся к номинальному режиму (например, номинальный вращающий момент, номинальное скольжение и др.).

Номинальная мощность является важнейшей величиной, характеризующей электрическую машину. Для электродвигателя под этим, как правило, понимают механическую мощность, развиваемую на валу при номинальном режиме работы, для генератора — электрическую мощность, которую электрическая машина способна отдавать во внешнюю цепь. По номинальному напряжению электриче-

ские машины обычно условно разделяют на машины низкого напряжения — менее 100 В, машины среднего напряжения — от 100 до 1000 В и машины высокого напряжения — свыше 1000 В.

С начала 1950-х гг. заводы отечественной электротехнической промышленности приступили к выпуску электрических машин в виде единых общесоюзных серий. Машины одной и той же общесоюзной серии, независимо от того, какими заводами они выпускаются, объединены общностью конструктивных решений, а также максимальной унификацией узлов и деталей. Номинальные мощности этих машин соответствуют стандартному ряду мощностей, а важнейшие параметры (напряжение, частота вращения, установочные размеры, энергетические показатели) должны удовлетворять требованиям соответствующих ГОСТов.

В электроремонтных мастерских промышленных и сельскохозяйственных предприятий в основном приходится ремонтировать электрические машины мощностью от 0,5 до 100 кВт напряжением до 1000 В. Поэтому ремонту обмоток именно таких машин уделено основное внимание в настоящей книге.

1.2. Асинхронные машины

Самыми распространенными машинами переменного тока в настоящее время являются асинхронные электродвигатели. Благодаря простоте устройства, высокой надежности в работе, удовлетворительным рабочим характеристикам и сравнительно невысокой стоимости они широко применяются во всех отраслях народного хозяйства — в промышленности, в строительстве, в сельскохозяйственном производстве, на транспорте.

Устройство наиболее часто используемого трехфазного электродвигателя с короткозамкнутым ротором схематически показано на рис. 1.1. Неподвижная часть машины — статор (рис. 1.2a) — состоит из сердечника 1, обмотки 2 и корпуса (станины) 3. Сердечник статора (рис. 1.2b) является частью магнито-

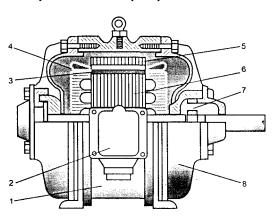


Рис. 1.1. Трехфазный асинхронный электродвигатель с короткозамкнутым ротором: 1 — корпус; 2 — коробка выводов; 3 — воздушный зазор; 4 — обмотка статора; 5 — сердечник статора; 6 — сердечник ротора; 7 — подшипник; 8 — подшипниковый щит

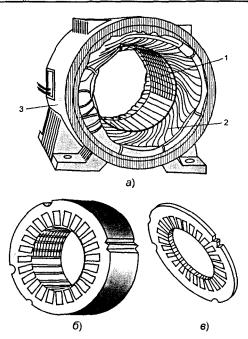


Рис. 1.2. Статор асинхронного электродвигателя: a — статор в сборе; b — сердечник статора; b — лист сердечника; b — сердечник; b — сердечник; b — сердечник; b — сердечник статора; b — сердечник статора;

провода машины, имеет форму полого цилиндра с равномерно расположенными на внутренней поверхности пазами осевого направления. Он представляет собой пакет, набранный и спрессованный из отдельных тонких листов электротехнической стали (толщиной 0,5 или 0,35 мм), отштампованных в виде колец с равномерно расположенными вдоль внутренней окружности выступами и впадинами, которые при сборке образуют пазы (рис. 1.28). Листы до сборки в пакет с обеих сторон покрывают изоляционной пленкой (окалиной или лаком) для уменьшения вихревых токов, возникающих в сердечнике при работе машины, и снижения потерь энергии в ней.

В пазах сердечника размещают трехфазную обмотку, выполненную из изолированного медного (реже алюминиевого) провода.

Сердечник статора с обмоткой расположен (обычно запрессован) внутри корпуса, который отливают из чугуна или алюминиевого сплава. К корпусу статора крепятся два литых подшипниковых щита со сквозными центральными отверстиями для подшипников, в которых вращается вал ротора.

Концы обмотки статора присоединены к зажимам, расположенным в коробке выводов, укрепленной на корпусе двигателя (рис. 1.3a). Обычно выводят все шесть концов трехфазной статорной обмотки, так как это позволяет использовать двигатель при разных напряжениях сети, отличающихся в $\sqrt{3}$ раз (например, 380 и 220 В). Более высокому напряжению сети в этом случае соответствует соединение обмоток звездой, более низкому — треугольником (рис. 1.36). Для упрощения таких переключений выводы (начала и конца) обмоток статора в коробке соответствующим образом маркируются и располагаются в определенном порядке.

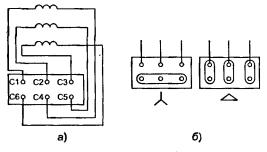


Рис. 1.3. Присоединение концов обмотки к зажимам (a) и соединение зажимов коробки при включении фазных обмоток звездой и треугольником (б)

Вращающаяся часть машины — ротор (рис. 1.4a) — состоит из сердечника, обмотки и вала. Сердечники статора и ротора разделены небольшим (обычно 0,1...0,4 мм) воздушным зазором.

Сердечник ротора 1 (рис. 1.4), являющийся частью магнитопровода, представляет собой спрессованный из отдельных тонких листов электротехнической стали пакет, имеющий форму цилиндра с продольными пазами по наружной поверхности и центральным отверстием для вала.

У двигателей с короткозамкнутым ротором роторная обмотка представляет собой вставленные в пазы сердечника неизолированные медные или алюминиевые стержни 3 (рис. 1.4), торцы которых с обеих сторон соединены короткозамыкающими кольцами 2 (рис. 1.4), выполненными обычно из того же материала, что и стержни. Такую короткозамкнутую обмотку называют также «беличьей клеткой» (рис. 1.46). В двигателях мощностью до 100 кВт она чаше всего выполняется путем заливки пазов расплавленным алюминием под давлением (рис. 1.46). Одновременно отливают стержни 3, короткозамыкающие кольца 2 и вентиляционные лопатки 5. Пазы сердечника в этом случае обычно делаются закрытыми, круглой или овальной формы.

У показанного на рис. 1.5 трехфазного асинхронного электродвигателя с фазным ротором статор устроен так же, как и у двигателя с короткозамкнутым

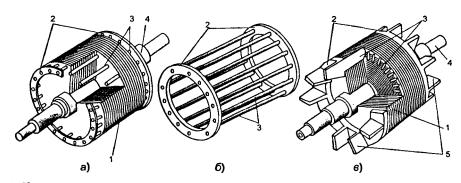


Рис. 1.4. Короткозамкнутый ротор асинхронного электродвигателя: a — с вставленными в пазы стержнями; b — «беличья клетка»; b — с обмоткой, выполненной заливкой алюминиевого сплава; b — сердечник ротора; b — короткозамыкающие кольца обмотки; b — стержни обмотки; b — вал; b — вентиляционные лопатки

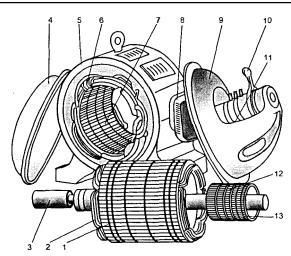


Рис. 1.5. Асинхронный электродвигатель с фазным ротором: 1 — сердечник ротора; 2 — обмотка ротора; 3 — вал; 4 — подшипниковый щит со стороны привода; 5 — корпус статора; 6 — обмотка статора; 7 — сердечник статора; 8 — коробка выводов; 9 — подшипниковый щит со стороны контактных колец; 10 — рычаг короткозамыкающего приспособления; 11 — щеткодержатели внутри щита 9; 12 — контактные кольца; 13 — смещающееся вдоль вала кольцо короткозамыкающего приспособления

ротором, в то время как ротор имеет существенные конструктивные отличия. Сердечник 1 ротора представляет собой пакет цилиндрической формы, набранный и спрессованный из отдельных тонких штампованных листов электротехнической стали и насаженный на вал 3. На наружной поверхности сердечника имеются пазы, в которые укладывается трехфазная обмотка 2 из изолированного медного провода. Обмотка фазного ротора, выполняемая по таким же схемам, как и обмотка статора, соединяется, как правило, в звезду, а три ее свободных конца изолированными проводами, проходящими через просверленное внутри вала отверстие, выводятся к укрепленным на валу трем (обычно медным или латунным) контактным кольцам 12, электрически изолированными между собой и от вала. С вращающимися при работе двигателя контактными кольцами соприкасаются неподвижные щетки, установленные в щеткодержателях 11, которые закреплены на подшипниковом щите 9. К коробке выводов 8, расположенной на корпусе 5 двигателя, подведены шесть концов статора 6. Кроме того, отдельно выведены три конца роторной обмотки 2 (через контактные кольца и щетки). В цепь обмотки ротора, таким образом, можно включить пусковой или регулировочный реостат.

В некоторых выпускавшихся ранее конструкциях асинхронных электродвигателей с фазным ротором имелось короткозамыкающее устройство, состоящее из рычага 10 с вилкой и подвижного кольца 13, с помощью которых после окончания пуска двигателя и выведения из цепи роторной обмотки пускового реостата все три контактных кольца ротора на ходу электрически соединялись между собой, а щетки поднимались. В настоящее время такие электродвигатели не выпускаются.

Асинхронные электродвигатели с фазным ротором несколько сложнее по устройству, дороже и менее надежны, чем двигатели с короткозамкнутым ротором, поэтому их применяют значительно реже — в приводах с тяжелыми условиями пуска или с повышенными требованиями к их плавности, при необходимости регулирования частоты вращения и т. п.

Переход отечественной электротехнической промышленности на выпуск единых общесоюзных серий электротехнических машин был начат именно с асинхронных электродвигателей, как машин самого широкого, массового применения.

1.2.1. Первая единая серия

Первая единая серия асинхронных электродвигателей общепромышленного применения была внедрена в производство в начале 50-х гг. прошлого века. Электродвигатели этой серии получили обозначения А (брызгозащищенное исполнение) и АО (закрытое обдуваемое исполнение). Серия охватывает двигатели мощностью от 0,6 до 100 кВт на частоты вращения 3000, 1500, 1000 и 750 об/мин, причем шкала мощностей состояла из 14 ступеней (0,6 — 1,0 — 1,7 — 2,8 — 4,5 — 7,0 — 10 — 14 — 20 — 28 — 40 — 55 — 75 и 100 кВт). В состав серии вошли машины семи габаритов (габарит характеризует внешний диаметр сердечника статора) — с 3-го по 9-й, причем по две длины в каждом габарите. т. е. всего 14 типоразмеров.

Кроме электродвигателей основного исполнения, в состав первой единой серии вошел ряд их электрических модификаций и специальных исполнений: с повышенным пусковым моментом (обозначаются АП и АОП), многоскоростные (в обозначении указывается соответствующее число полюсов, например 8/6/4), с фазным ротором (АК). В связи с необходимостью экономии меди выпущены также электродвигатели с обмотками статора из алюминиевого обмоточного провода (в конце обозначения типа двигателей после указания числа полюсов ставится буква А).

Корпуса электродвигателей А и АО выполнены литыми из серого чугуна, а двигателей АОЛ (3-й и 4-й габариты) — из алюминиевого сплава. У брызгозащищенных двигателей (А) корпус имеет два боковых отверстия и одно внизу — для выхода охлаждающего воздуха (засасывается воздух через отверстия в подшипниковых щитах). Внутри корпуса сделаны четыре продольных ребра, на которых крепится сердечник статора с обмоткой. Корпуса двигателей закрытого обдуваемого исполнения (АО) имеют снаружи продольные ребра, увеличивающие поверхность охлаждения машины. Внутренняя поверхность корпусов двигателей этих типов механически обработана, но имеет продольные, получаемые при литье каналы, куда входят скобы, скрепляющие сердечник статора. Двигатели АО 7—9-го габаритов имеют каналы и для внутренней циркуляции воздуха.

Электродвигатели первой единой серии защищенного исполнения (рис. 1.6a) всех габаритов имеют на роторе с обеих сторон вентиляционные лопатки 3, расположенные на короткозамыкающих кольцах обмотки ротора и отливаемые заодно с нею.

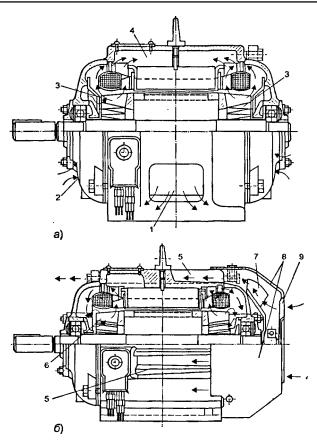


Рис. 1.6. Разрез и схема движения охлаждающего воздуха асинхронных электродвигателей первой единой серии (4-й габарит): а — двигатель защищенного исполнения (A); б — двигатель закрытого обдуваемого исполнения (AO); 1 — отверстие в корпусе для выхода охлаждающего воздуха; 2 — отверстие в подшипниковых щитах для входа охлаждающего воздуха; 3 — лопатки; 4 — продольное ребро корпуса для крепления сердечника статора; 5 — наружные охлаждающие ребра корпуса; 6 — лопатки вентилятора, перемешивающие воздух внутри машины; 7 — вентилятор наружного обдува; 8 — кожух вентилятора наружного обдува; 9 — отверстие в кожухе для засасывания охлаждающего воздуха

У электродвигателей закрытого обдуваемого исполнения (рис. 1.66) на конец вала, противоположный рабочему, насажен внешний центробежный вентилятор 7, закрытый штампованным из стального листа кожухом 8, направляющим охлаждающий воздух на наружные ребра 5 корпуса. Кроме того, у таких двигателей 7—9-го габаритов имеется внутренний вентилятор, перемешивающий воздух внутри машины и способствующий более интенсивному отводу тепла.

Сердечники статоров электродвигателей первой единой серии собирались из штампованных листов электротехнической стали толщиной 0,5 мм. При изготовлении сердечников листы набирались на оправку, спрессовывались, а пакет скреплялся скобами, которые приваривались к его наружной поверхности электро-

сваркой (пакеты статоров двигателей АОЛ заливались алюминиевым сплавом под давлением, без применения скоб). Чтобы скрепить пакет и предотвратить распушение зубцов, на торцах сердечника статора установлены утолщенные крайние листы и нажимные шайбы (кольца), скрепленные теми же скобами. В крайних торцевых и двух-трех соседних листах двигателей 6—8-го габаритов пазы имеют большие размеры, а зубцы выполнены без коронок. Для получения должной жесткости несколько таких листов сварены между собой точечной сваркой.

Обмотки статоров электродвигателей первой единой серии 3—5-го габаритов — однослойные концентрические, за исключением двухполюсных электродвигателей, имеющих двухслойную обмотку. У всех двигателей этой серии 6—9-го габаритов обмотки двухслойные.

Пакеты короткозамкнутых роторов двигателей 3—5-го габаритов напрессованы на накатанную (рифленую) поверхность вала без шпонки. У двигателей с фазным ротором (АК) листы сердечника ротора набраны непосредственно на вал со шпонкой, спрессованы между собой и удерживаются двумя нажимными шайбами, которые закреплены на валу пружинными кольцами, входящими в канавки вала. По торцам сердечника установлены утолщенные крайние листы, что предотвращает распушение зубцов.

Медные контактные кольца двигателей с фазным ротором закрыты съемным кожухом, имеющим в торце отверстие для входа, а внизу — отверстие для выхода охлаждающего воздуха. Сдвоенные щеткодержатели штампованы, клепаной конструкции, расположены под кожухом и крепятся на изолированном стержне.

Двигатели защищенного исполнения (A) в отличие от закрытых обдуваемых (AO) в коробке выводов не имеют колодки зажимов и выводы статорной обмотки выполнены в виде свободных проводов с наконечниками. У электродвигателей на напряжение 127/220 и 220/380 В выведены шесть проводов обмотки статора (три начала и три конца), а у двигателей на напряжение 500 В обмотка статора соединена в звезду и выведены лишь три свободных конца.

1.2.2. Вторая единая серия

Вторая единая серия асинхронных электродвигателей, заменившая первую, освоена промышленностью в 1961—1965 гг. Электродвигатели этой серии, получившие обозначение А2 (брызгозащищенное исполнение) и АО2 (закрытое обдуваемое исполнение), отличаются от двигателей первой единой серии более высокими КПД и соѕф, меньшими размерами и массой при той же мощности, более полной унификацией узлов и деталей. Улучшение энергетических показателей и снижение электропотребления получены главным образом за счет применения для изоляции обмоток более теплостойких и тонких материалов.

Вторая единая серия асинхронных электродвигателей общепромышленного применения охватывает девять габаритов машин — с 1-го по 9-й. В каждом габарите — по две длины. Таким образом, серия содержит 18 типоразмеров двигателей. В диапазоне от 0,6 до 100 кВт шкала мощностей состоит из 18 ступеней: от 0,6 — 0,8 — 1,1 — 1,5 —2,2 — 3,0 — 4,0 — 5,5 — 7,5 — 10 — 13 — 17 — 22-30-40-55-75-75-100 кВт. Это на четыре ступени больше, чем у

первой единой серии, и позволяет полнее удовлетворить требования многих отраслей народного хозяйства. Расширена и шкала синхронной частоты вращения, у которой не четыре, а пять ступеней: 3000, 1500, 1000, 750, 600 об/мин.

Вторая единая серия имеет семь электрических модификаций: с повышенным пусковым моментом (АОП2); с повышенным скольжением (АОС2 и АОЛС2); с фазным ротором (АОК2 и АК2); многоскоростные; с повышенными энергетическими показателями для текстильной промышленности (АОТ2); с алюминиевой обмоткой статора; для частоты 60 Гц (после полного обозначения типа добавляется число 60).

Кроме основных исполнений A2 и AO2, предусмотрено еще шесть специализированных:

- тропическое (Т);
- химостойкое (Х);
- влагоморозостойкое (В);
- малошумное (Ш);
- для станков нормальной (С1) и повышенной (С2) точности.

Указанные в скобках буквы и цифры добавляются после полного обозначения типа.

Электродвигатели второй единой серии A2 и AO2 могут иметь три конструктивных формы исполнения: на лапах, с двумя подшипниковыми щитами (1M1); на лапах, с фланцем на подшипниковом щите со стороны рабочего конца вала (1M2); без лап, с фланцем на подшипниковом щите со стороны рабочего конца вала (1M3).

Электродвигатели 1—5-го габаритов имеют только закрытое обдуваемое исполнение (AO2), а 6—9-го габаритов — как закрытое обдуваемое (AO2), так и защищенное (A2). Вентиляционная система второй единой серии несколько улучшена, что способствует более интенсивному охлаждению машин. Корпуса и подшипниковые щиты электродвигателей второй единой серии выполнены из чугуна, однако у двигателей 1—3-го габаритов типа АОЛ2 корпуса и подшипниковые щиты — из алюминиевого сплава.

Сердечники статоров двигателей имеют полузакрытые пазы. Статорные обмотки — всыпные, выполнены проводом марки ПЭТ (кроме двигателей специализированных исполнений), у двигателей 1—3-го и частично 4-го габаритов — однослойные, а у двигателей больших габаритов — двухслойные.

Электродвигатели рассчитаны на питание напряжением 220/380, 380 и 500 В. При тропическом исполнении применено напряжение 230/400 В.

На рис. 1.7 показана конструкция двигателей второй единой серии. Система обозначения типа двигателя как первой, так и второй единой серии — буквенно-цифровая. Например, обозначение АО-51-4 расшифровывается так: А — асинхронный, О — обдуваемый, первая цифра после букв — номер габарита, вторая цифра — номер длины, последняя цифра (после черточки) — число полюсов. Следовательно, указанное обозначение относится к входящему в состав первой единой серии трехфазному асинхронному электродвигателю с короткозамкнутым ротором, в закрытом обдуваемом исполнении, с сердечником 5-го габарита и первой длины, четырехполюсному.

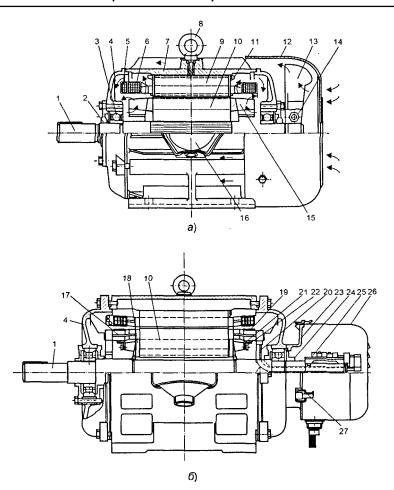


Рис. 1.7. Асинхронные электродвигатели второй единой серии: a — AO2-41; b — AK2-81; b — вал; b — крышка подшипника; b — подшипник; b — подшипниковый щит; b — выводные провода обмотки статора; b — катушка однослойной обмотки статора; b — корпус статора; b — подъемное кольцо (рым-болт); b — сердечник статора; b — сердечник ротора; b — скоба, стягивающая пакет сердечника статора; b — кожух вентилятора наружного обдува; b — вентилятор наружного обдува; b — болт крепления ступицы вентилятора на валу; b — лопатки вентилятора, перемешивающего воздух внутри машины; b — коробка выводов; b — обмотка ротора; b — нажимная шайба; b — бандаж лобовой части обмотки ротора; b — вывод от роторной обмотки к контактному кольцу; b — кольцо, поддерживающее лобовые части роторной обмотки; b — бобышки нажимной шайбы, к которым крепится поддерживающее кольцо; b — диск, на котором крепится ось щеткодержателя; b — наружная крышка подшипниковой камеры (прижимается диском b); b — контактные кольца; b — съемный кожух контактных колец; b — замок съемного кожуха

Обозначение AO2-61-6 относится к входящему в состав второй единой серии трехфазному асинхронному электродвигателю с короткозамкнутым ротором, имеющему закрытое обдуваемое исполнение, с сердечником 6-го габарита и первой длины, шестиполюсному.

1.2.3. Единая серия 4 А

Единая серия 4 А, разработанная и внедренная в 1980-х гг. взамен прежних серий асинхронных электродвигателей общепромышленного применения, отражает дальнейший качественный рост отечественной электротехнической промышленности. Двигатели серии 4 А (рис. 1.8) выгодно отличаются от соответствующих электродвигателей прежних серий меньшими массой и габаритами, сниженным уровнем шума и вибраций, увеличенными пусковыми моментами, повышенной надежностью. Так, например, если в первой единой серии электродвигатель с короткозамкнутым ротором, имеющий закрытое обдуваемое исполнение и рассчитанный на мощность 4 кВт при синхронной частоте вращения 1500 об/мин, обладал массой 79 кг и кратностью пускового момента 1,4, то во второй единой серии масса такого двигателя была уменьшена до 60 кг, а кратность пускового момента увеличена до 1,5; в серии 4-А эти величины равны соответственно 40,5 кг и кратность пускового момента равна 2.

Улучшенные качества двигателей новой единой серии достигнуты благодаря применению в магнитопроводах лучшей электротехнической стали с меньшими удельными потерями и большей магнитной проницаемостью, использованию новых нагревостойких и высокопрочных материалов для электрической изоляции обмоток, а также усовершенствованию системы вентиляции. По технико-экономическим показателям и эксплуатационной надежности электродвигатели серии 4 А не уступали лучшим зарубежным образцам. Серия охватывает двигатели мощностью от 0,12 до 400 кВт и содержит все необходимые народному хозяйству модификации основного и специализированного исполнений по конструкции, условиям окружающей среды, способу монтажа и т. д.

Шкала мощностей двигателей серии 4 А в интервале от 0,55 до 110 кВт такова: 0,55-0,75-1,1-1,5-2,2-3,0-4,0-5,5-7,5-11-15-18,5-22-30-37-45-55-75-90-110 кВт. В указанном интервале мощностей шкала высот осей вращения содержит следующие значения: 63, 71, 80, 90, 110, 112, 132, 160, 180, 200, 225 мм.

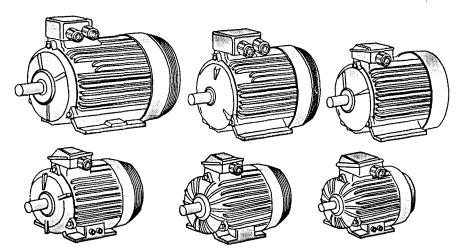


Рис. 1.8. Трехфазные асинхронные электродвигатели единой серии 4 А

Система обозначений в этой единой серии существенно изменена. На принадлежность электродвигателя к данной серии указывают символы 4 А (закрытое обдуваемое исполнение) или 4 АН (брызгозащищенное исполнение) в начале обозначения. Если после этого стоит еще одна буква А, то это означает, что корпус и подшипниковые щиты двигателя выполнены из алюминиевого сплава, а если стоит буква Х, то двигатель имеет алюминиевый корпус и чугунные подшипниковые щиты (отсутствие буквы А или Х означает, что корпус и подшипниковые щиты двигателя выполнены из чугуна). Затем в обозначении ставится буква, указывающая электрическую модификацию, например, С — соответствует двигателям с повышенным скольжением. Далее стоит число, означающее высоту оси вращения двигателя в миллиметрах. Следующие буквы указывают градации длины корпуса статора (L — длинный, M — средний, S — короткий) и сердечника (A — короткий, В — длинный). Затем дается число полюсов, причем если двигатель многоскоростной, то даются все значения числа полюсов, разделенные косыми линиями. Последующие дополнительные буквы указывают на то или иное специализированное исполнение (Н — малошумное, ВМ — влагоморозостойкое и др.).

Так. например, обозначение 4 А71 А4 относится к асинхронному электродвигателю единой серии 4 А, имеющему короткозамкнутый ротор, закрытое обдуваемое исполнение, чугунный корпус и подшипниковые щиты, высота оси вращения двигателя над плоскостью опоры — 71 мм, длина сердечника — короткая, двигатель четырехполюсный, исполнение — основное (неспециализированное). Обозначение 4 АХ71 В4 указывает, что этот двигатель в отличие от предыдущего имеет корпус из алюминиевого сплава, а сердечник магнитопровода — длинный. Обозначение 4 АХС90L4: это двигатель закрытого обдуваемого исполнения, с короткозамкнутым ротором, имеющий алюминиевый корпус и чугунные подшипниковые щиты, относится к электрической модификации с повышенным скольжением, высота оси вращения — 90 мм, корпус статора — длинный, число полюсов — 4, исполнение — основное. Двигатель 4 АХ90L4/2 относится к модификации многоскоростных, т. е. имеют обмотку статора, которая может переключаться с четырех на два полюса.

1.2.4. Крановые электродвигатели

Крановые электродвигатели серии МТ (с фазным ротором) и МТК (с короткозамкнутым ротором) предназначены для привода подъемных и других механизмов, которым свойственны кратковременные и повторно-кратковременные режимы работы с частыми пусками, торможениями и большими перегрузками, должны обладать не только весьма высокой механической прочностью, но и повышенной нагревостойкостью изоляции (класс В), особенно если учесть, что эти двигатели используются в металлургическом производстве, где они подвержены действию высокой окружающей температуры. Кроме того, удовлетворительная работа в указанных выше режимах требует пониженной инерционности вращающихся частей и повышенной перегрузочной способности, что может быть достигнуто с применением двигателя удлиненной формы.

На рис. 1.9а видны особенности конструкции этих машин. Двигатель имеет удлиненную форму и закрытое обдуваемое исполнение. Вентилятор 15 размещен со стороны рабочего конца вала. Выступающая часть вала 18 — конической формы, со шпонкой, с резьбой и гайкой 19 на конце. Такая конструкция позволяет плотно и надежно закреплять на валу муфту, соединяющую двигатель с приводным механизмом. Вал двигателя имеет повышенную прочность. Фазная

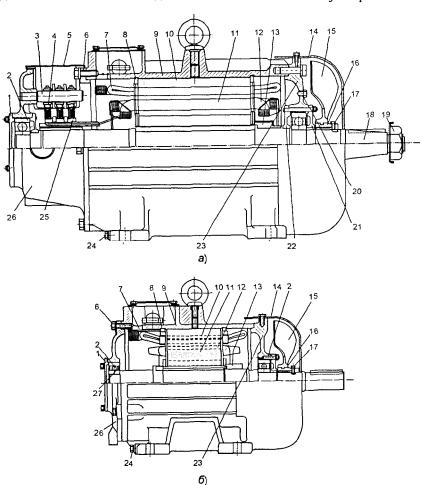


Рис. 1.9. Крановые асинхронные электродвигатели: a — MT 41 с фазным ротором, b — MTK-11 с короткозамкнутым ротором; 1, 21 и 22 — крышки подшипниковых камер; 2 — подшипник; 3 — палец щеткодержателя; 4 — щеткодержатель; 5 — крышка окна в подшипниковом щите; 6 — болт крепления подшипникового щита; 7 — двухслойная обмотка статора; 8 — запорное кольцо сердечника; 9 — корпус статора; 10 — сердечник статора; 11 — сердечник ротора; 12 — обмотка ротора; 13 — втулка на валу, прижимающая сердечник ротора; 14 — кожух вентилятора; 15 — литой алюминиевый вентилятор; 16 — стальная втулка залитая в вентилятор; 17 — стопорный винт крепления вентилятора; 18 — конический рабочий конец вала со шпонкой; 19 — затяжная гайка; 20 — болт, закрывающий отверстие в подшипниковом щите для измерения воздушного зазора между статором и ротором; 23 и 26 — подшипниковые щиты; 24 — болт для присоединения заземления; 25 — контактные кольца; 27 — защитная шайба шарико-

обмотка ротора 12 плотно закреплена в пазах, а лобовые ее части удерживаются усиленными бандажами. Задний подшипниковый щит 26 находится не перед контактными кольцами, как у двигателей АК и АК2, а за ними, т. е. контактные кольца помещены внутри двигателя.

На рис. 1.96 показан общий вид кранового двигателя МТК с короткозамкнутым ротором. По конструкции он сходен с двигателем МТ, но не имеет контактных колец. У изображенного на рисунке двигателя 1-го габарита нет внутренних подшипниковых крышек, так как здесь применены шарикоподшипники 2 с защитной шайбой 27.

1.2.5. Электродвигатели повышенной частоты

Асинхронные электродвигатели повышенной частоты (чаще всего на 200 и 400 Гц) нашли широкое применение для привода электроинструментов (дрелей, электропил и др.), используемых во многих отраслях народного хозяйства: в строительном деле, на лесозаготовках, в сельскохозяйственном производстве и

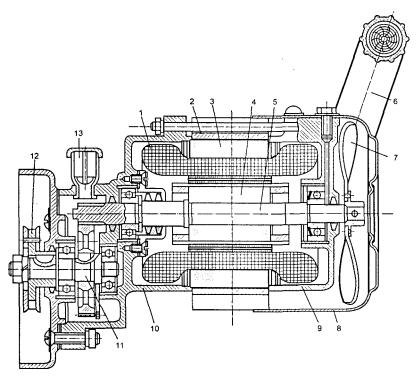


Рис. 1.10. Асинхронный электродвигатель повышенной частоты (200 Гц) для электропилы: 1 — обмотка статора; 2 — корпус статора; 3 — сердечник статора; 4 — сердечник ротора с короткозамкнутой обмоткой; 5 — вал; 6 — рукоятка электропилы, укрепленная на кожухе вентилятора; 7 — вентилятор пропеллерного типа; 8 — кожух вентилятора; 9 — задний подшипниковый щит; 10 — передний подшипниковый щит, совмещенный с корпусом редуктора; 11 — ведомая шестерня редуктора (ведущей шестерней является конец вала 5 с нарезанными на нем зубъями); 12 — ведущая звездочка пильной цепи; 13 — масленка редуктора

т. д. Это небольшие по мощности (до 3 кВт), размерам и массе (до 7 кг), но высокооборотные (на 6000, 12000 и даже 24000 об/мин) двигатели с короткозамкнутым ротором, обычно встраиваемые в электроинструмент и имеющие закрытое обдуваемое исполнение.

Электродвигатели повышенной частоты для электроинструмента выпускаются на напряжение 36, 42, 127 и 220 В. На рис. 1.10 показан в разрезе электродвигатель повышенной частоты (200 Γ ц) для переносной цепной электропилы. Электродвигатель имеет номинальную мощность 1,7 кВт и синхронную частоту вращения 12000 об/мин. Масса двигателя 5,5 кг.

Особенности конструкций таких двигателей: применение для магнитопроводов более тонких листов (толщиной 0,35 и 0,25 мм) электротехнической стали высокого качества, что связано со стремлением уменьшить потери энергии в магнитопроводе при повышенной частоте; применение прочной, влагостойкой и нагревостойкой (классов Е и В) изоляции обмотки статора 1, поскольку от качества изоляции зависит электробезопасность рабочего; применение легких алюминиевых и магниевых сплавов для корпусов 2, подшипниковых щитов 9 и 10, а также других конструктивных деталей; совмещение функций ряда узлов и деталей двигателя (например, передний подшипниковый щит 10 одновременно является корпусом редуктора, рабочий конец вала 5 является ведущей шестерней редуктора, кожух 8 вентилятора 7 служит для установки рукоятки 6 и др.).

1.2.6. Однофазные электродвигатели

Однофазные асинхронные электродвигатели мощностью от десятков ватт до нескольких киловатт нашли достаточно широкое применение в различного рода бытовых приборах, приводах вентиляторов бытового и производственного назначения, а также небольших станков. Их преимущество — возможность использования в таких местах и помещениях, где нет трехфазной сети, но подведена двухпроводная однофазная сеть.

Значительная часть однофазных асинхронных электродвигателей изготавливается на базе серийных трехфазных двигателей. Например, однофазные двигатели серии АВЕ изготавливаются на базе трехфазных встраиваемых двигателей АВ и т. д. В конструкции механической части и магнитопроводов таких двигателей нет каких-либо существенных отличий в сравнении с асинхронными электродвигателями трехфазного тока. Главное отличие — в конструкции, выполнении и подключении статорной обмотки. Для пуска однофазных асинхронных электродвигателей часто используют специальную пусковую обмотку, находящуюся на статоре вместе с основной рабочей обмоткой, но смещенной на некоторый угол по отношению к ней. Пусковая обмотка зачастую подключается к сети через конденсатор, а после пуска и разгона двигателя отключается. В ряде конструкций обе обмотки являются рабочими и на все время работы двигателя остаются включенными: одна — непосредственно в сеть, вторая — через конденсатор. У многих однофазных асинхронных двигателей в цепь обмотки, включенной в сеть через конденсатор, на время пуска подключается дополнительный (пусковой) конденсатор.

2. Схемы обмоток электрических машин

2.1. Виды обмоток электрических машин и способы их изображения

Важная составная часть электрической машины — ее обмотки, в которых происходят основные рабочие процессы по преобразованию энергии. В наиболее распространенных типах электрических машин можно выделить:

- трехфазные обмотки машин переменного тока, используемые обычно в статорах трехфазных асинхронных и синхронных машин, а также в роторах асинхронных двигателей с контактными кольцами;
- однофазные обмотки статоров асинхронных однофазных двигателей с короткозамкнутым ротором;
- обмотки якорей коллекторных машин постоянного и однофазного переменного тока;
- короткозамкнутые обмотки роторов асинхронных электродвигателей;
- обмотки возбуждения синхронных и коллекторных машин.

Обмотки возбуждения синхронных и коллекторных машин состоят, как правило, из сравнительно простых полюсных катушек. Несложным является и устройство короткозамкнутых обмоток роторов асинхронных двигателей. Остальные же виды перечисленных выше обмоток представляют собой достаточно сложные системы размещенных в пазах изолированных проводников, соединенных по особым схемам, требующим специального изучения.

Простейшим элементом обмотки является виток, который состоит из двух последовательно соединенных проводников, размещенных в пазах, находящихся, как правило, под соседними разноименными полюсами. Лежащие в пазах проводники витка являются его активными сторонами, поскольку именно здесь наводится ЭДС от главного магнитного поля машины. Находящиеся вне паза части витка, соединяющие между собой активные проводники и располагающиеся по торцам магнитопровода, называются лобовыми частями.

Проводники, образующие виток, могут состоять из нескольких параллельных проводов. Обычно к этому прибегают, чтобы сделать обмотку мягкой и облегчить ее укладку в пазы.

Один или несколько последовательно соединенных витков образуют катушку или секцию обмотки. Если секция состоит из одного витка, то такую обмотку называют стержневой, так как в этом случае находящиеся в пазах проводники обычно представляют собой жесткие стержни. Обмотка, состоящая из многовитковых секций, называется катушечной.

Катушка, или секция обмотки, характеризуется числом витков \mathbf{w}_{c} и шагом y, т. é. количеством охватываемых ею зубцов магнитопровода. Так, например,

если одна сторона катушки (секции) лежит в первом пазу, а вторая — в шестом, то катушка охватывает пять зубцов и шаг ее равен пяти (y=5). Шаг, таким образом, может быть определен как разность между номерами пазов, в которые уложены обе стороны катушки (y=6-1=5). Зачастую в обмоточных данных и технической литературе шаг обозначают номерами пазов (начиная с первого), в которые уложены стороны катушки, т. е. в данном случае это обозначение выглядит так: y=1-6.

Шаг обмотки называют диаметральным, если он равен полюсному делению τ , τ . е. расстоянию между осями соседних разноименных полюсов, или, что то же самое, числу пазов (зубцов), приходящихся на один полюс. В этом случае $y=\tau=z/2p$, где z — число пазов (зубцов) сердечника, в котором размещена обмотка; 2p — число полюсов обмотки.

Если шаг катушки меньше диаметрального, то его называют укороченным. Укорочение шага, характеризуемое коэффициентом укорочения $k_y = y/\tau$, широко применяется в обмотках статоров трехфазных асинхронных электродвигателей, так как при этом экономится обмоточный провод (за счет более коротких лобовых частей), облегчается укладка обмотки и улучшаются характеристики двигателей. Применяемое укорочение шага обычно лежит в пределах 0.85-0.66.

В духполюсной электрической машине центральный угол, соответствующий полюсному делению, равен 180°. Хотя в четырехполюсных машинах этот геометрический угол равен 90°, в шестиполюсных — 60° и т. д., принято считать, что между осями соседних разноименных полюсов во всех случаях угол равен 180 электрическим градусам (180 эл. град.). Иначе говоря, полюсное деление τ = 180 эл. град.

Различают однослойные обмотки, где каждый паз занят стороной одной катушки (секции), и двухслойные, где в пазах размещены стороны разных катушек (секций) в два слоя.

Способы изображения обмоток электрических машин достаточно условны и своеобразны. Обмотки содержат большое число проводников, и изобразить все соединения и проводники на чертеже практически невозможно. Поэтому приходится прибегать к изображению обмоток в виде схем.

Преимущественно пользуются двумя основными способами изображения обмоток на схемах.

При первом способе цилиндрическую поверхность сердечника вместе с обмоткой (а у коллекторных машин — вместе с коллектором) как бы мысленно разрезают по образующей и разворачивают на плоскость чертежа. Такого типа схемы называются развернутыми, или схемами-развертками (рис. 2.1).

При втором способе обмотку как бы проектируют на плоскость, перпендикулярную оси сердечника, показывая вид обмотки с торца (для коллекторных машин обычно со стороны коллектора). Проводники (или активные стороны секций и катушек), расположенные в пазах па поверхности сердечника, изображают кружочками и показывают торцевые (лобовые) соединения обмотки. При необходимости изображают не только видимые с данной стороны торцевые соединения обмотки, но и размещенные с обратной стороны сердечника невидимые лобовые части, причем их изображение в этом случае выносится за окружность сердечника. Схемы такого типа называют торцевыми, или круговыми (рис. 2.2).

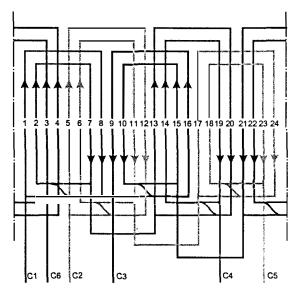


Рис. 2.1. Развернутая схема трехфазной однослойной концентрической обмотки с $z=24,\ 2p=4$

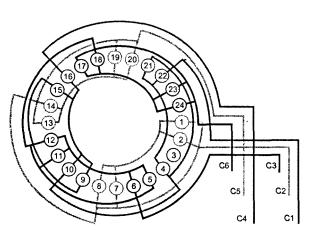


Рис. 2.2. Торцевая схема обмотки m = 3, z = 24, 2p = 4

Наиболее распространены схемы, выполненные по первому способу. Они легче читаются и более наглядны. Для облегчения чтения и выполнения торцевых схем их выполняют упрощенным способом (рис. 2.3). Но даже после этого для обмотчика, не имеющего достаточного опыта работы с торцевыми схемами, они кажутся непонятными и неудобочитаемыми. В развернутых схемах расположение катушек и катушечных групп, соединение катушек и катушечных групп выглядит более реально и понятно.

Схемы дают достаточно четкое представление об устройстве и размещении на сердечнике всех элементов обмотки и соединений между ними. На схемах в основном изображают лишь проводники обмотки, стараясь по возможности

опустить все остальные детали, загромождающие схему и затрудняющие ее чтение. Необходимые дополнительные технические данные приводятся на схемах в виде надписей. Катушка, или секция на схеме изображается одной линией независимо от того, намотана она в один провод или в несколько параллельных проводов, состоит из одного витка или является многовитковой. На развернутой схеме секция или катушка изображаются в виде замкнутой, напоминающей действительную конфигурацию секции (катушки) фигуры, от которой ответвляются выводы.

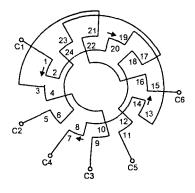


Рис. 2.3. Торцевая схема при $2\rho = 4$, a = 1

В развернутых схемах двухслойных обмоток стороны катушек или секций, лежащие ближе к

воздушному зазору, т. е. в верхнем слое паза, изображают сплошными линиями, а стороны, лежащие в нижнем слое, — штриховыми (пунктирными). Иногда (в книгах старых изданий) активные стороны катушек в обоих слоях паза изображают сплошными линиями, но те стороны, что лежат в верхнем слое, располагают слева, а те, что лежат в нижнем слое, — справа.

На схемах трехфазных обмоток провода разных фаз могут изображаться различающимися между собой линиями, например сплошными, штриховыми и штрихпунктирными, линиями разной расцветки или разной толщины, двойными линиями с разной штриховкой между ними.

На схемах обычно указывают номера пазов, номера коллекторных пластин, могут быть также обозначены номера секций и их сторон, номера и маркировка выводных концов катушечных групп, фаз обмотки, указаны направления токов, фазные зоны, полюса магнитного поля и т. д. (рис. 2.4—2.6).

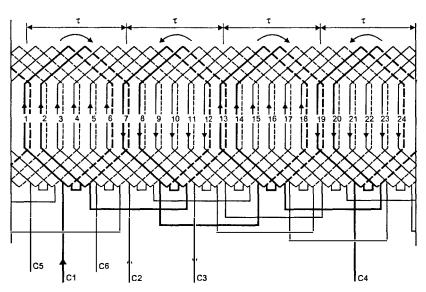


Рис. 2.4. Развернутая схема двухслойной обмотки при $z=24,\ 2\rho=4,\ q=2$

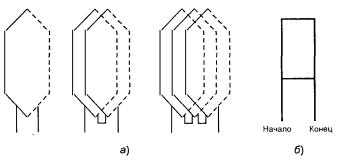


Рис. 2.5. Изображение катушечных групп на схемах: a — развернутой; δ — условной

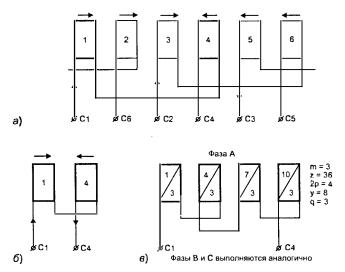


Рис. 2.6. Условные схемы двухслойной обмотки статора: a — для трех фаз при $2\rho = 2$; b — для одной обмотки статора при d0 = 4

Схемы необходимы не только при изучении принципа работы обмоток, их устройства, свойств и особенностей, но также и для выполнения обмоточных работ. Не имея схемы и не сверяясь с ней в процессе работы, трудно выполнить обмотку, поэтому перед началом ремонта обмотки надлежит составить ее схему или найти в справочнике аналогичную.

Следует отметить, что полные развернутые и торцевые схемы сложных многополюсных обмоток с большим числом пазов получаются очень громоздкими и трудными для чтения. В этих случаях в процессе выполнения обмоток, элементы которых повторяются, часто используют практические развернутые схемы, где изображена, например, лишь одна фаза (иногда часть фазы) трехфазной обмотки или несколько секций обмотки коллекторной машины. Широко используются также упрощенные торцевые схемы, где целые катушечные группы изображаются в виде части дуги с обозначениями выводов, а более мелкие элементы обмотки не изображают или изображают на схеме отдельно. Упрощенные торце-

вые схемы удобны при выполнении соединений между катушечными группами в сложных обмотках.

Пример изображения упрощенной торцевой схемы приведен на рис. 2.7. Катушечные группы на этих схемах изображаются в виде отрезка дуги Г (рис. 2.7а), выводов катушечных групп — в виде коротких линий радиального направления. За начало группы Н принимается обычно линия, расположенная снаружи окружности, второй вывод К является концом группы, началам присваиваются нечетные номера 1, 3, 5 и т. д., концам — четные 2, 4, 6 и т. д. Таким образом, начало первой группы обозначается цифрой 1, ее конец — 2, начало второй группы — 3, конец — 4 и т. д. Рисунок схемы сопровождается таблицей, в которой указаны данные обмотки, необходимые для ее укладки, и порядок соединения выводов катушечных групп (табл. 2.1).

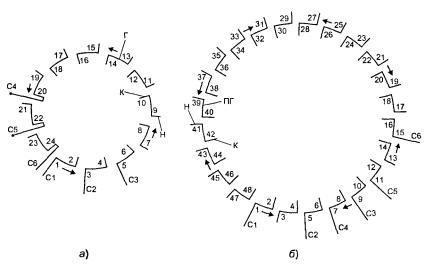


Рис. 2.7. Изображение и нумерация выводов катушечных групп однослойной обмотки статора при 2p=8, q=3. z=72, y=9: a — при $n_r=12$ (концентрическая обмотка); b — при b — при b0 (концентрическая обмотка вразвалку); b1. ПГ — изображение катушечных групп (полугрупп), b3. Н, b4. Начало и конец группы (полугруппы)

Таблица 2.1. Выполнение соединений однослойных обмоток (рис. 2.7) статора с шестью еыеодами катушечных групп

n _K	α	Соединение катушечных групп (полугрупп) между собой и с выводами
		По рис. 2.7а
3	1	2 7; 4 9; 6 11; 8 13; 10 15; 12 17; 14 19; 16 21; 18 23
		1 C1; 3 C2; 5 C3; 20 C4; 22 C5; 24 C6
3	2	2 7; 4 9; 6 11; 14 19; 16 21; 18 23
		1 13 C1; 3 15 C2; 5 17 C3
		8 20 C4; 10 22 C5; 12 24 C6
3	4	17 13 19 C1; 3 9 15 21 C2; 5 11 17 23 C3
		17 13 19 C1; 3 9 15 21 C2; 5 11 17 23 C3

n _K	α	Соединение катушечных групп (полугрупп) между собой и с выводами
		По рис. 2.76
1; 2; 1	1	2 44; 4 10; 6 48; 8 14; 12 18; 16 22; 20 26; 24 30; 28 34; 32 38; 36 42; 40 46
		3 45; 13 19; 17 23; 21 27; 25 31; 29 35; 33 39; 37 43; 41 47
		1 C1; 5 C2; 9 C3; 7 C4; 11 C5; 15 C6
1; 2; 1	2	2 44; 4 10; 6 48; 8 14; 12 18; 16 22; 20 26; 24 30; 28 34; 32 38; 36 42; 40 46
		3 45; 13 19; 17 23; 21 27; 37 43; 41 47
		1 25 C1; 5 29 C2; 9 33 C3
		7 31 C4; 11 35 C5; 15 39 C6
1; 2; 1	4	2 44; 4 10; 6 48; 8 14; 12 18; 16 22; 20 26; 24 30; 28 34; 32 38; 36 42; 40 46
		1 13 25 37 C1; 7 19 31 43 C4
		5 17 29 41 C2; 11 23 35 47 C5
		9 21 33 45 C3; 3 15 27 39 C6

2.2. Схемы трехфазных обмоток

В трехфазных обмотках те катушки, активные стороны которых расположены под двумя соседними разноименными полюсами, обычно соединяют последовательно между собой в катушечные группы. Катушечные группы, как правило, образуют одну пару полюсов одной фазы обмотки.

Катушечные группы соединяют в фазы обмотки. Для образования фаз может быть использовано последовательное, параллельное или смешанное соединение катушечных групп между собой, однако при этом должно соблюдаться правильное чередование полюсов магнитного поля, создаваемого обмоткой.

Полюса можно определять по направлению тока в данной стороне катушки (условно принимая одно из направлений за какой-нибудь полюс, в таком случае противоположное направление — противоположный полюс). Так как ток переменный, то и полюс с частотой тока меняет свою полярность, поэтому на схемах удобнее пользоваться направлением тока в витках катушки, расположенных в данном пазу (рис. 2.8—2.12).

Все три фазы обмотки должны быть симметричными. Поэтому в каждой из них содержится равное количество катушек, одинаково соединенных между собой и симметрично расположенных в магнитном поле машины. Только при этом условии суммарные ЭДС в фазах будут равными по величине и сдвинутыми относительно друг друга на 1/3 периода, т. е. образуют симметричную трехфазную систему ЭДС. Фазы обмотки могут соединяться между собой в звезду или в треугольник.

Одной из важнейших характеристик трехфазных обмоток является показатель q, равный числу пазов, приходящихся на полюс и фазу:

$$q = \frac{z}{2pm},$$

где z — число пазов, в которых размещена обмотка; 2p — число полюсов магнитного поля; m — число фаз.

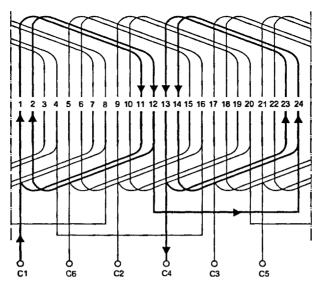


Рис. 2.8. Шаблонная обмотка вразвалку при 2p=2, z=24, q=4, y=10(1-11), a=1

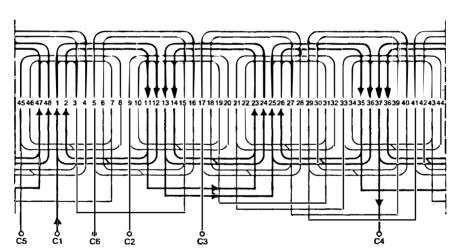


Рис. 2.9. Концентрическая обмотка вразвалку (трехплоскостная) при 2p=4, z=48, y=11(1-12), 9(2-11), a=1

Число q также показывает, из скольких катушек состоят катушечные группы данной обмотки. Так, если трехфазная (m=3) четырехполюсная (2p=4) обмотка расположена в 60 пазах (z=60), то

$$q = \frac{z}{2pm} = \frac{60}{4 \cdot 3} = 5.$$

Такая обмотка будет иметь по пять катушек в каждой катушечной группе.

Если же в 60 пазах разместить трехфазную восьмиполюсную обмотку, то число пазов на полюс и фазу окажется не целым, а дробным $q = 60/(8 \cdot 3) = 2^{1}/_{2}$. Такие обмотки называются обмотками с дробным показателем q.

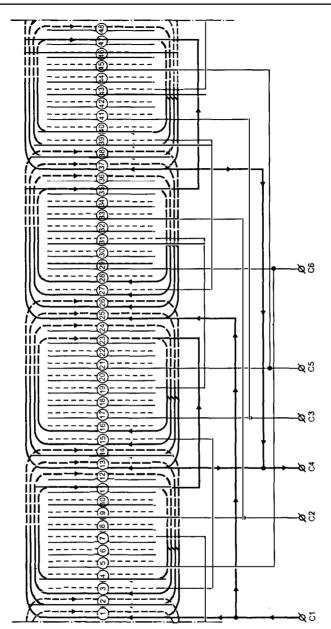


Рис. 2.10. Схема двухслойной концентрической обмотки при 2p = 4, z = 48, q = 4, y = 13(1-14), 11(2-3), 9(3-12), 7(4-11)

Так как в каждой отдельной катушечной группе может быть лишь целое число катушек, то при дробном q катушечные группы в каждой фазе обмотки не будут одинаковыми, а будут содержать разное количество катушек. В этом случае число q показывает среднее количество катушек, приходящихся на одну катушечную группу. На рис. 2.12 изображена обмотка однофазного двигателя, у которого пусковая обмотка имеет дробное q.

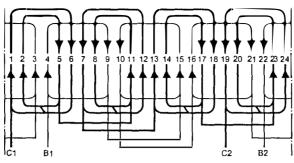


Рис. 2.11. Однослойная (концентрическая вразвалку) обмотка однофазного двигателя с пусковым элементом при 2p=4, z=24

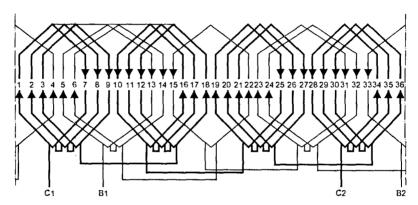


Рис. 2.12. Однослойная обмотка (шаблонная вразвалку) однофазного двигателя с пусковым элементом при $2\rho=4$, z=36

Обычные трехфазные обмотки выполняются как шестизонные. В таких обмотках пазы, занимающие два полюсных деления (360 эл. град.), распределяются на шесть частей — зон (по одной зоне на каждую фазу в пределах одного полюсного деления). Если обмотка выполнена c q, равным целому числу, и c диаметральным шагом $y = \tau$, то каждая зона шестизонной обмотки занимает 60 эл. град.

Для трехфазных обмоток существует следующее соотношение между частотой вращения магнитного поля машины, числом его полюсов и частотой тока в обмотке:

$$n=\frac{60}{f\cdot p},$$

где n — частота вращения магнитного поля, об/мин; p — число пар полюсов; f — частота проходящего по обмотке тока, Γ ц.

2.2.1. Однослойные концентрические обмотки

Однослойные концентрические обмотки широко применяются в асинхронных двигателях небольшой и средней мощности, в частности в асинхронных двигателях единой серии 3, 4 и 5-го габаритов. Это объясняется возможностью достигнуть хорошего заполнения пазов проводниковыми материалами, посколь-

ку не нужна изоляция между слоями обмотки, а также наличием на электромашиностроительных заводах соответствующих полуавтоматических станков, позволяющих механизировать операцию намотки.

Название типа обмотки — однослойная концентрическая — объясняется тем, что, во-первых, каждый из пазов, в котором располагается обмотка, занят полностью одной стороной катушки, т. е. стороны катушек уложены в пазах в один слой, а во-вторых, катушки, составляющие одну катушечную группу обмотки, имеют разную ширину и расположены так, что охватывают как бы концентрически одна другую.

В двигателях старого выпуска и при перемотке двигателей часто применяется всыпная концентрическая обмотка (рис. 2.13).

В новых двигателях обмотки рассматриваемого типа имеют лобовые части, расположенные в двух или трех ярусах (плоскостях). В соответствии с расположением лобовых частей различают двухплоскостные (двухъярусные) и трехплоскостные (трехъярусные) обмотки.

На рис. 2.14 представлены развернутая схема и торцевая схема расположения лобовых частей однослойной концентрической духплоскостной обмотки трехфазной (m=3) четырехполюсной (2p=4) машины, имеющей сердечник с 24 пазами (z=24). Обмотка выполнена с последовательным соединением катушечных групп в фазе, т. е. без параллельных ветвей (число параллельных ветвей a=1).

Что касается распределения катушечных групп по ярусам, то нетрудно видеть, что в одном и том же ярусе можно поместить лишь те катушечные группы, лобовые части которых не перекрещиваются между собой.

При показателе q, равном четному числу, однослойную концентрическую обмотку можно выполнить по-другому, изменив расположение половины катушек каждой катушечной группы, как показано на рис. 2.15, в этой обмотке q=4. Лобовые части одной половины катушек каждой катушечной группы отогнуты вправо, а другой половины — влево. Такая обмотка называется концентрической обмоткой вразвалку. На схеме лобовые части катушек обмотки, выполненной вразвалку, располагаются как бы в трех плоскостях, поэтому такую обмотку часто называют трехплоскостной. При укладке обмотки в машину лобо-

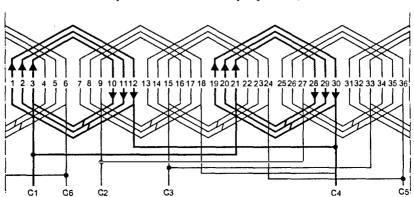


Рис. 2.13. Концентрическая обмотка статора при $2\rho=4$, z=36, q=3, a=2, y=11: 9; 7 (1-12; 2-11; 3-10)

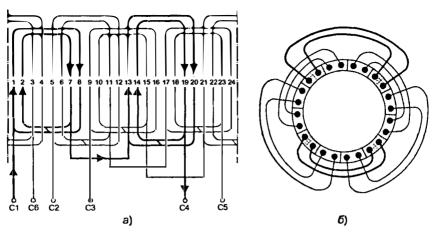


Рис. 2.14. Однослойная концентрическая двухплоскостная обмотка: a — развернутая схема, δ — торцевая схема расположения лобовых частей

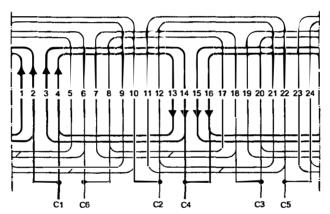


Рис. 2.15. Схема трехфазной однослойной концентрической обмотки вразвалку (трехплоскостная) с z = 24, 2p = 2, q = 4, a = 2, y = 11; 9 (1—12; 2—11)

вые части всех катушек собираются так же, как и в обычной концентрической обмотке, в один пучок. Но при выполнении обмотки вразвалку толщина пучка получается меньшей. Такая обмотка несколько уменьшает длину вылета лобовых частей обмотки и, как следствие, концентрическая обмотка вразвалку широко применяется в современных электрических машинах.

2.2.2. Однослойные шаблонные (равнокатушечные) обмотки

Однослойные обмотки могут быть выполнены не только концентрическими катушками. Определенное на рис. 2.16, 2.17 направление токов в пазовых частях катушек может быть получено и при ином, чем в концентрических обмотках. типе соединений в лобовых частях. При этом уменьшается число катушек, имеющих разные размеры. Такой обмоткой является, например, равнокатушечная или, как ее часто называют, цепная, обмотка.

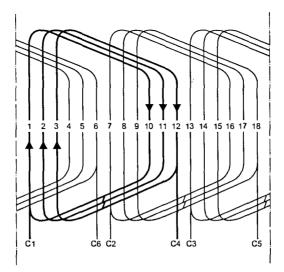


Рис. 2.16. Равнокатушечная обмотка статора при 2p = 2, z = 18, q = 3, a = 1, y = 9 (1—10)

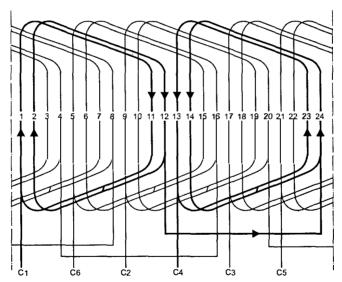


Рис. 2.17. Равнокатушечная обмотка статора вразвалку при 2p = 2, z = 24, q = 4, a = 1, y = 10 (1—11)

Все катушки однослойной цепной обмотки имеют одинаковые размеры. Поэтому их изготовление проще, чем катушек концентрической обмотки, однако укладка катушек цепной обмотки в пазы сложнее. Это объясняется необходимостью изгибать лобовые части каждой катушки после укладки ее в пазы для того, чтобы освободить место для лобовых частей следующих за ней катушек. В электрическом отношении обе обмотки — концентрическая и равнокатушечная — равноценны, но из-за более сложной укладки в пазы цепные обмотки в новых машинах не применяются. Их можно встретить лишь при ремонте машин старых выпусков.

2.2.3. Двухслойные обмотки

Двухслойные петлевые обмотки с целым числом пазов на полюс и фазу широко применяются в статорах трехфазных машин переменного тока. Поскольку эти обмотки двухслойные, то в каждом пазу сердечника в два слоя располагаются активные строны двух катушек, причем сторона одной катушки — на дне паза (нижний слой), а второй катушки — поверх нее, т. е. в части паза, прилегающей к воздушному зазору (верхний слой). Лобовые части каждой катушки тоже занимают два слоя, а переход из одного слоя в другой осуществляется в лобовых частях катушек. Петлевой обмотка называется потому, что при обходе ее по схеме приходится как бы вилять то вперед, то назад.

Двухслойные петлевые обмотки дают возможность получить любое укорочение шага. Поэтому здесь можно выбрать любой шаг обмотки, наиболее благоприятный для данной машины, что позволяет добиться хороших электрических свойств двигателей при одновременном сокращении расхода обмоточной меди.

На рис. 2.18 приведены схемы двухслойных петлевых обмоток статора.

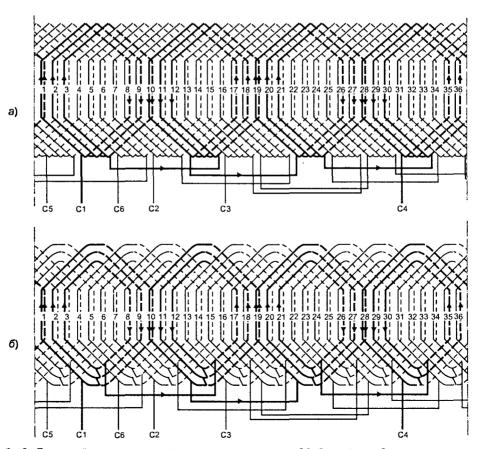


Рис. 2.18. Двухслойная петлевая обмотка статора при z=36, 2p=4, q=3, a=1; a — обычная двухслойная обмотка с шагом y=7; b — двухслойная концентрическая обмотка с шагами y=9; 7; b=1; b=1

2.2.4. Одно- и двухслойные обмотки

Одно- и двухслойные обмотки, как и двухслойные концентрические, выполняются из катушечных групп с концентрическими катушками с укороченным шагом. Также применяются для обмоток тихоходных двигателей с малым числом пазов (дробное q). Отличие состоит в том, что одно- и двухслойные катушки, которые располагаются в пазах, не имеющих катушек других фаз, выполняются как однослойные (рис. 2.19 и 2.20). Такой смешанный тип обмотки позволяет произвести укладку более просто. Этот способ удобен для двухполюсных машин, особенно при малом диаметре расточки статора, когда отгиб большого числа сторон в расточку при закладке катушек последнего шага затруднен.

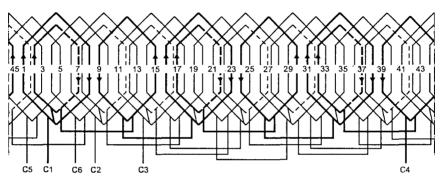


Рис. 2.19. Одно- и двухслойная обмотка при 2p = 6, z = 45, $q = 2^1/_2$, a = 1, y = 7; 5; 6 (1-8; 2-7; 1-7)

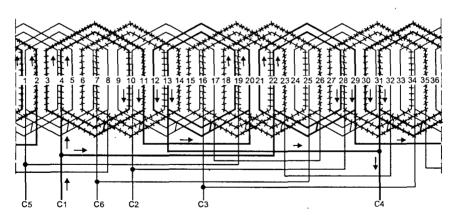


Рис. 2.20. Одно- и двухслойная обмотка вразвалку при 2p=4, z=36, a=2, y=8; 6(1-9;2-8)

2.2.5. Обмотки многоскоростных двигателей

Во многих механизмах требуется изменять скорость в процессе работы. Чаще всего для привода таких механизмов используются двигатели постоянного тока, но в ряде случаев применяют также и асинхронные двигатели как более дешевые и надежные.

Частоту вращения асинхронного двигателя можно определить по формуле:

$$n = n_1(1-s) = \left(\frac{60f}{\rho}\right)(1-s).$$

Из этой формулы следует, что частоту вращения асинхронного двигателя можно регулировать, изменяя частоту f питающего тока, скольжение s или число пар p полюсов двигателя. На практике применяют все три способа регулирования. Изменение частоты тока возможно c помощью статических преобразователей частоты. Скольжение меняют путем включения активного сопротивления e цепь фазного ротора. Число полюсов обмотки можно изменить e двигателях, имеющих обмотки, соединенные e специальные схемы. Такие двигатели называют многоскоростными, e их обмотки — полюсно-переключаемыми.

Переключение числа пар полюсов обмотки асинхронного двигателя — простой и распространенный метод регулирования, так как не требуется дополнительного оборудования и в то же время обеспечивается работа двигателя с достаточно высокими энергетическими показателями на разных частотах вращения. Он широко применяется на практике, несмотря на то, что частота вращения этим методом изменяется только ступенями. Частота вращения поля в машине

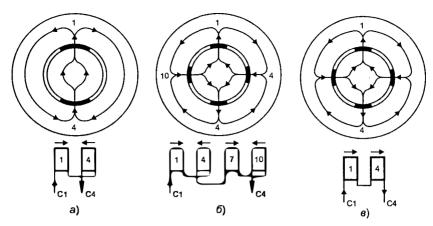
$$n_1 = \frac{60f}{p} .$$

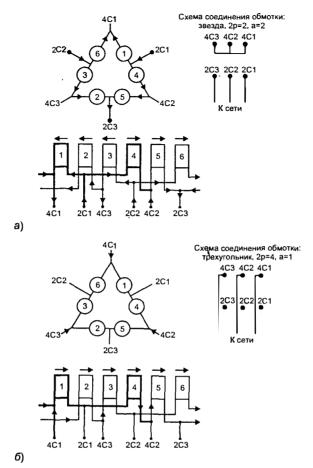
При токе промышленной частоты f = 50 Γ ц она равна 3000 об/мин при 2p = 2; 1500 об/мин при 2p = 4; 1000 об/мин при 2p = 6 и т. д.

Частота вращения двигателя при переключении его обмотки на разное число полюсов меняется в таком же соотношении. Изменения числа полюсов статора можно достичь двумя способами: установкой в пазы статора двух независимых обмоток, выполненных на разные числа полюсов, или переключением схемы соединения катушечных групп одной обмотки.

Первый способ дает возможность получить любые соотношения между числами полюсов и, следовательно, между частотами вращения двигателя. Недостатком такого способа регулирования является неполное использование объема пазов статора, так как в пазы укладываются обе обмотки, а двигатель работает только на одной из них. Вторая обмотка в это время отключена, и занятая ею часть объема пазов не используется. Это вызывает необходимость увеличить размеры пазов и всего двигателя по сравнению с односкоростным той же мощности.

Второй способ изменения числа полюсов основан на изменении направления магнитных потоков в машине путем переключения схемы обмотки. На рис. 2.21a на поперечном сечении машины с 2p=2 условно показано положение двух катушечных групп (1 и 4), принадлежащих одной фазе в двухполюсной обмотке. Стрелками отмечено направление магнитных силовых линий потока машины. На схеме соединения катушечных групп этой фазы также стрелками отмечено направление обтекания их током. Причем направление стрелки над катушечной группой вправо (1-я катушечная группа) соответствует направлению силовых линий потока от центра, а влево (4-я катушечная группа) — к центру. При таком соединении катушечных групп обмотка образует два полюса. На рис. 2.216 такое




Рис. 2.21. Направление потока в магнитопроводе и условные схемы обмотки одной фазы машины: a — с двумя катушечными группами при 2p = 2; δ — с четырьмя катушечными группами при 2p = 4; δ — с двумя катушечными группами при 2p = 4

же построение полюсов проделано для четырехполюсной машины, одной фазе обмотки которой принадлежат 1, 4, 7 и 10-я катушечные группы. При встречном включении четырехкатушечных групп, т. е. при принятой в обычных двухслойных обмотках схеме, обмотка образует четыре полюса: два одной и два другой полярности. Такую же картину поля можно получить и при двух катушках в одной фазе обмотки, если их включить не встречно, а согласно, как показано на рис. 2.21s. Сравнив между собой направления потоков и схемы обмоток, видим, что изменение направления тока в одной катушечной группе фазы двухполюсной обмотки приводит к увеличению числа полюсов с двух до четырех, т. е. в два раза. Если таким же образом изменить схему соединений двух (4-ю и 10-ю или 1-ю и 7-ю) катушечных групп четырехполюсной машины, то распределение потока будет таким же, как и в машине с 2p = 8. Таким образом, изменение направления включения половины катушечных групп в схеме двухслойной обмотки приводит к увеличению числа полюсов машины в два раза.

Этот принцип используется во всех двухскоростных асинхронных двигателях с отношением чисел полюсов 1:2, например в двигателях с переключением чисел полюсов с 2p=2 на 2p=4 или с 2p=4 на 2p=8.

В коробке выводов многоскоростных двигателей шесть зажимов, к которым подсоединены соответствующие выводы обмоток (рис. 2.22a). Они обозначаются так же, как и выводы обычных обмоток, но перед обозначением ставится число, указывающее, сколько полюсов будет иметь обмотка, если эти выводы подключены к сети. Для работы двухскоростного двигателя на 2p = 2/4 с числом полюсов 2p = 2 с сетью соединяются выводы 2C1, 2C2 и 2C3 (рис. 2.226); выводы 4C1, 4C2 и 4C3 соединены между собой накоротко. Обмотка при этом соединяется в звезду с двумя параллельными ветвями. Если с сетью соединены выводы 4C1, 4C2 и 4C3, а выводы 2C1, 2C2 и 2C3 разомкнуты (рис. 2.22a), то обмотка образует четыре полюса и соединяется в треугольник при a = 1.

Следует отметить, что многоскоростные обмотки используют, как правило, в статорах асинхронных двигателей с короткозамкнутым ротором, так как в них

Рис. 2.22. Схема включения обмотки на разные числа полюсов и направления токов в катушечных группах: a - 2p = 2; b - 2p = 4

нет необходимости в переключении роторной обмотки, что чрезмерно бы усложнило машину.

На рис. 2.23 показана схема двухслойной петлевой двухскоростной обмотки, переключающейся с восьми на четыре полюса (2p=8/4). При этом схема соединения фаз обмотки меняется с треугольника на двойную звезду $(\Delta/\Upsilon\Upsilon)$. Обмотка размещена в 36 пазах (z=36), шаг обмотки y=5, (1-6). При включении обмотки на восемь полюсов шаг ее является удлиненным, так как $\tau_8=z/(2p)=36/8=4^1/2$ (т. е. $y>\tau_8$). Когда же обмотка включается на четыре полюса, полюсное деление становится равным девяти $(\tau_4=36/4=9)$, в этом случае шаг обмотки лишь немногим больше половины полюсного деления, т. е. сильно укорочен.

Изменить число полюсов двигателя можно не только при укладке на статоре одной многоскоростной обмотки, но также и при размещении в пазах статора двух разных обмоток. Комбинация этих способов дает возможность получать двигатели с достаточно большим числом ступеней регулирования скорости. Обычно двухскоростные двигатели с изменением числа полюсов вдвое (2p = 4/2; 8/4; 12/6) имеют на статоре одну двухслойную переключающуюся обмотку. Если же

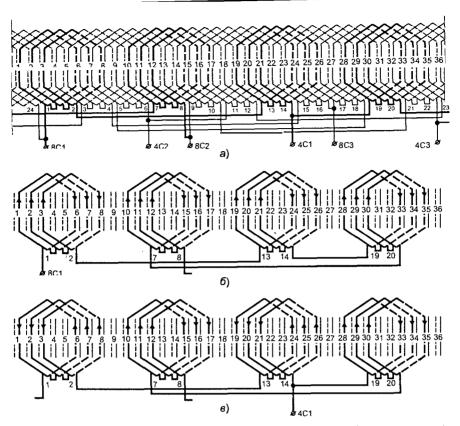


Рис. 2.23. Развернутая схема двухслойной двухскоростной обмотки (z = 36, 2p = 8/4, a = 1. Соединение фаз $\Delta/\Upsilon\Upsilon$): a — общая развернутая схема; δ — включение обмотки на 2p = 8 (показана одна фаза); s — включение обмотки на 2p = 4 (показана одна фаза)

число полюсов двухскоростного двигателя меняется не в два раза (например, при 2p=6/4), то двигатель, как правило, имеет две отдельные обмотки, расположенные в одних и тех же пазах. В этом случае обмотки обычно выполняются однослойными, с концентрическими катушками и последовательным соединением катушечных групп (a=1), а фазы соединяются в звезду, чтобы избежать замкнутых контуров при включении в сеть второй обмотки.

Двигатели на три и четыре скорости (частоты вращения) также имеют две отдельные обмотки. При трех скоростях (частотах вращения) одна из обмоток переключается с отношением чисел полюсов 1:2, а промежуточное число полюсов получают за счет второй обмотки. У четырехскоростных двигателей каждая из двух обмоток переключается на два разных числа полюсов, например, одна обмотка — с 12 на 6 полюсов (2p = 12/6), а вторая — с 8 на 4 (2p = 8/4).

В новых сериях асинхронных двигателей применяют более сложные схемы полюснопереключаемых обмоток, которые позволяют изменять число полюсов и в соотношениях, отличных от 1:2. В серии 4 А выпускаются, например, двигатели с одной полюснопереключаемой обмоткой на 2p=4/6 или 2p=6/8 полюсов и т. д. Количество выводных проводов и их обозначения остаются такими же, как и в ранее рассматриваемых схемах.

2.3. Схемы обмоток одно- и двухфазных двигателей

Однофазные асинхронные электродвигатели мощностью до 1 кВт, редко до 2 кВт, широко применяются в условиях, когда имеется только однофазная сеть, например для привода механизмов различных приборов, электрифицированного инструмента, в бытовых механизмах и т. п. Если обмотку двигателя питать однофазным током, то электромагнитное поле в нем будет не вращающимся, как в трехфазных машинах, а пульсирующим, энергетические показатели станут хуже, чем у трехфазных, а пусковой момент будет равен нулю, т. е. двигатель без специальных устройств не будет запускаться. Поэтому в статорах однофазных двигателей устанавливают две обмотки, которые часто называют также фазами обмотки. Одна из них — главная, или рабочая, другая — вспомогательная. Обмотки располагаются по пазам статора так, что их оси сдвинуты относительно друг друга в пространстве на электрический угол 90° (рис. 2.24). Если фазы токов обмоток будут не одинаковы, т. е. сдвинуты во времени, то электромагнитное поле в статоре двигателя становится вращающимся. Энергетические показатели двигателя улучшаются и появляется пусковой момент. При сдвиге фаз токов на электрический угол 90° и одинаковых МДС обмоток поле становится круговым и КПД однофазного двигателя будет наибольшим. Добиться этого можно, выполнив обе обмотки двигателя одинаковыми и последовательно подключив к одной из них конденсатор (рис. 2.25a). Такие двигатели называются однофазными конденсаторными.

Емкость конденсатора, необходимая для получения кругового поля, зависит от активных и индуктивных сопротивлений обмоток двигателя и от его нагрузки. Для однофазных конденсаторных двигателей конденсатор рассчитывают так, чтобы поле было круговым при номинальной нагрузке. Его включают последовательно с одной из фаз обмоток на все время работы. Этот конденсатор называют рабочим и обозначают C_p . Во время пуска двигателя емкость рабочего конденсатора оказывается недостаточной для образования кругового поля и пусковой мо-

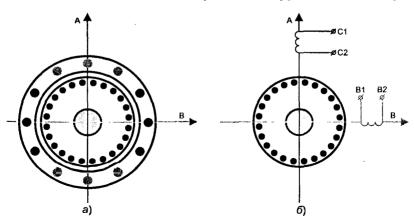


Рис. 2.24. Оси обмоток дух- и однофазных двигателей: a — расположение катушек разных фаз в пазах статора; δ — условное изображение фаз обмотки

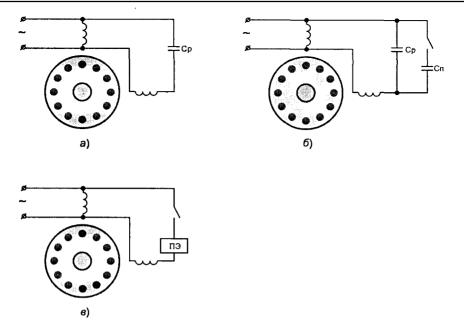


Рис. 2.25. Схемы включения однофазных двигателей: a — с постоянно включенным конденсатором (конденсаторные двигатели); b — с рабочим и пусковым конденсаторами; b — с пусковым элементом; b — рабочий конденсатор; b — пусковой конденсатор; b — пусковой элемент

мент двигателя невелик. Для увеличения пускового момента параллельно с рабочим конденсатором включается второй — пусковой конденсатор (C_n). Суммарная емкость пускового и рабочего конденсаторов обеспечивает получение кругового вращающегося поля во время пуска двигателя и пусковой момент его увеличивается. После разгона двигателя пусковой конденсатор отключается, а рабочий остается включенным (рис. 2.256). Таким образом, двигатель запускается и работает с номинальной нагрузкой при вращающемся круговом поле.

В статорах большинства одно- и двухфазных двигателей применяют всыпные однослойные обмотки с концентрическими катушками (рис. 2.26). Они имеют либо четыре вывода — начала и концы главной и вспомогательной фаз, — либо только три. При трех выводах концы главной и вспомогательной фаз соединяются между собой внутри корпуса и наружу выводится провод от места их соединения — общей точки обмотки.

Для уменьшения вылета лобовых частей катушек однослойные обмотки часто выполняют вразвалку. Если число пазов на полюс и фазу четное, то обмотки вразвалку по существу не отличаются от таких же обмоток трехфазных машин. Если же число q нечетное, то большие катушки в группах делают «расчесанными» т. е. отгибают лобовые части половины их витков в одну, а второй половины — в другую сторону (рис. 2.27).

Необходимость установки конденсаторов удорожает однофазные двигатели, увеличивает их габариты и снижает надежность, так как конденсаторы выходят из строя чаще, чем двигатели. Поэтому большинство однофазных асинхронных

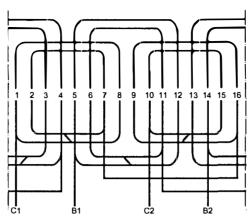


Рис. 2.26. Схема однослойной концентрической обмотки с m=2, z=16, $2\rho=2$, выполненной вразвалку

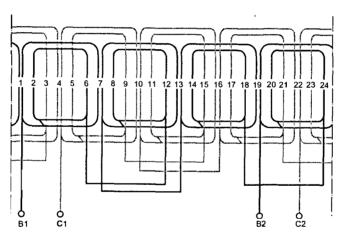


Рис. 2.27. Схема однослойной концентрической обмотки с m=2, z=24, 2p=4, q=3, выполненной с «расчесанными» катушками

двигателей рассчитывают на работу только с одной — главной обмоткой. Однако для того, чтобы их можно было пускать, устанавливают и вторую — вспомогательную обмотку, которую часто называют пусковой. Она предназначается только для создания вращающегося поля при пуске двигателя. Такие однофазные двигатели называются двигателями с пусковой фазой (или с пусковой обмоткой).

Сдвиг фаз токов главной (рабочей) и пусковой обмоток достигается изменением сопротивления пусковой обмотки путем последовательного включения с ней так называемого пускового элемента (рис. 2.25_8) — конденсатора или резистора (чаще всего используют более дешевый — резистор).

Пусковые обмотки, как правило, отличаются от рабочих и по числу витков, и по числу катушек, и сечением провода. Они обычно занимают $^1/_3$ всех пазов статора. В оставшихся $^2/_3$ пазов располагается рабочая обмотка. Схемы соединений и числа полюсов рабочей и пусковой обмоток одинаковы (рис. 2.28).

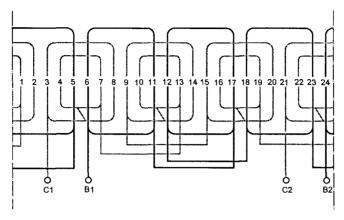


Рис. 2.28. Схема однослойной концентрической обмотки однофазного двигателя с пусковой фазой с z = 24, 2p = 4; C1 - C2 - главная фаза, <math>B1 - B2 - г пусковая фаза

Чтобы избежать установки резисторов, которые должны быть рассчитаны на полный пусковой ток, во многих однофазных двигателях пусковую обмотку выполняют с повышенным сопротивлением пусковой фазы. Для этой цели пусковую обмотку наматывают из провода меньшего сечения, чем рабочую, или выполняют ее с частично бифилярной намоткой. При этом длина провода возрастает, ее активное сопротивление увеличивается, а индуктивное сопротивление и МДС остаются такими же, как и без бифилярных витков. Чтобы образовались бифилярные витки, катушку пусковой обмотки выполняют из двух секций со встречным направлением намотки (рис. 2.29). Одна секция, направление намотки которой совпадает с нужной для пуска машины полярностью, называется основной, а секция со встречной намоткой — бифилярной. Последняя имеет всегда меньше витков, чем основная. На схемах обмоток катушки, имеющие частично бифилярную намотку, обозначаются петлей (рис. 2.30а). На рис. 2.30б показана схема обмотки с пусковой фазой, имеющей частично бифилярную намотку. Главная обмотка выполнена концентрическими катушками вразвалку. Петли у катушек пусковой фазы указывают на то, что катушки выполнены с частично бифилярной намоткой.

В обмотке с бифилярными катушками надо учитывать, что в каждой катушке вспомогательной фазы часть витков намотана встречно. Это уменьшает число эффективных проводников в пазу, нейтрализуя действие такого же количества витков, намотанных в основном направлении, поэтому для нахождения числа эффективных витков в катушке (эффективных проводников в пазу) надо из об-

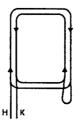


Рис. 2.29. Образование бифилярных витков

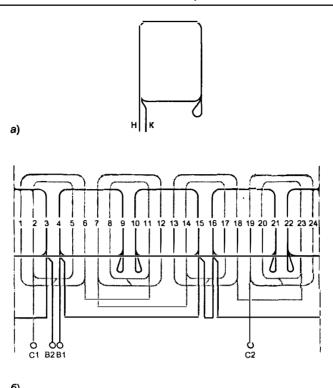


Рис. 2.30. Схема обмотки с катушками, имеющими бифилярные витки: a — изображение катушек с бифилярными витками на схеме обмотки, δ — схема обмотки с z = 24, 2p = 4

щего числа вычесть удвоенное число встречно намотанных витков. Если, например, в пазу лежит катушка, в которой всего 81 виток, из них встречно намотаны 22, то число эффективных проводников в пазу будет: $81-2\cdot 22 = 37$.

Для определения числа встречно намотанных витков при известных общем числе проводников в пазу и числе эффективных проводников в пазу надо произвести обратное действие, т. е. из общего числа вычесть число эффективных проводников и полученный результат разделить на два. При общем числе проводников 81 и числе эффективных 37 число встречно намотанных витков должно быть: (81-37)/2 = 22.

Бифилярную катушку можно получить, если уложить в одни и те же пазы две секции катушки, одна из которых поворачивается на 180° вокруг оси параллельной пазам. Правая и левая стороны повернутой секции при этом меняются местами.

Пусковая обмотка однофазных двигателей рассчитана только на кратковременную работу — на время пуска двигателя. Ее необходимо отключать от сети сразу же, как только двигатель разгонится, иначе она перегреется и двигатель выйдет из строя. Такие двигатели применяются, например, для привода компрессоров во всех бытовых холодильниках, привода стиральных машин и т. д. Пускозащитное реле, установленное на холодильниках и стиральных машинах, включает обе обмотки двигателя, а после его разгона отключает пусковую обмотку. Двигатель работает с одной включенной рабочей обмоткой.

3. Обмоточные провода

Обмотки электрических машин выполняют из медных и алюминиевых круглых или прямоугольных обмоточных проводов. Провода обмоточные с эмалевой изоляцией обозначаются буквенно-цифровым кодом, в котором указываются: вид изоляции, форма сечения провода, тип изоляции и через дефис — конструктивное исполнение, температурный индекс, материал проволоки. В условное обозначение провода входят: марка провода с добавлением (через дефис) номинального диаметра круглой проволоки или размеры сторон прямоугольной проволоки (для прямоугольного провода) и обозначение стандарта или ТУ на провода конкретных марок.

Провода обмоточные с эмалевой изоляцией (ПЭ) классифицируются по следующим признакам:

- материалу изоляции: эмалевая; поливинилацетатная; винифлекс (В); метальвин (М); полиуретановая (У); полиэфирная (Э); полиимидная (И); полиамидная (АИ); полиэфириримидная (ЭИ); полиэфирцианураатимидная фреоностойкая (Ф);
- форме сечения: круглые; прямоугольные (П);
- толщине изоляции: типа 1; типа 2;
- конструктивному исполнению изоляции: однослойная; двухслойная (Д); трехслойная (Т); четырехслойная (Ч); с термопластичным покрытием, склеивающимся под воздействием температуры (К);
- температурному индексу (нагревостойкости): 105, 120, 130, 155, 180, 200, 220 °C и выше;
- материалу проволоки: медная; медная безжелезистая (БЖ); медная никелированная (МН); алюминиевая мягкая (А); алюминиевая твердая (АТ); биметаллическая: алюмомедная мягкая (АМ), сталемедная (СМ); манганиновая мягкая (МТ), манганиновая стабилизированная (МС), константановая мягкая (КМ), константановая твердая (КТ), никелькобальтовая (НК); нихромовая (НХ).

Провода обмоточные с эмалево-волокнистой, волокнистой, пластмассовой и пленочной изоляцией классифицируются по:

- виду изоляции: волокнистая: хлопчатобумажная (Б), из натурального шелка (Ш), капроновая (К), полиэфирная (лавсановая) (Л), из трилобала (Кп), оксалона (Од), аримида (Ар); бумажная (Б); стекловолокнистая (С); стеклополиэфирная (СЛ); пластмассовая (П);
- пленочная: фторопластовая (Ф), полиамидо-фторопластовая (И), фторопластовая с полиамидно-фторопластовой (ФИ); комбинированная;
- числу обмоток: однослойная (О); двухслойная (Д);
- виду пропитки: глифталевая, полиэфирная и другие основы (130 °C); кремнийорганическая (155 и 180 °C); органосиликатная композиция (свыше 180 °C):

- типу изоляции: нормальная; утонченная (Т); усиленная (У); дополнительная поверхностная лакировка (Л);
- отличительным особенностям: транспонированный провод (Т); подразделенный провод (П); число элементарных проводников (обозначается цифрой); толщина общей бумажной изоляции (знаменатель дроби);
- температуре эксплуатации: 60, 80, 90, 120, 180, 200 °C;
- нагревостойкости в пропитанном состоянии на классы: У (90 °C), А (105 °C), Е (120 °C), В (130 °C), F (155 °C), Н (180 °C), С (более 180 °C);
- материалу проволоки: медная; медная безжелезистая (БЖ); медная никелированная (МН); алюминиевая (А); манганиновая мягкая (ММ); манганиновая твердая (МТ); константановая мягкая (КМ); константановая твердая (КТ); нихромовая (НХ);
- конструктивному исполнению жилы: круглая (однопроволочная, многопроволочная); прямоугольная; полая.

Таблица 3.1. Основные характеристики обмоточных проводов

Марка провода	Характеристика изоляции	Диаметр про- волоки, м м	Максимальная рабочая температура, °С
ПЭВ-1	Один слой высокопрочной эмали ВЛ-931	0,022,5	105
ПЭВ-2	Два слоя высокопрочной эмали ВЛ-931	0,062,5	105
ПЭТ-155	Лак ПЭ-955 на полиэфоримидной основе	0,022,5	155
ПЭТВ	Высокопрочный нагревостойкий лак ПЭ-939 или ПЭ-943 на основе полиэфиров	0,022,5	130
ПЭВД	Высокопрочная эмаль с дополнительным термопластичным слоем лака	0,10,5	105
пэвл	Высокопрочная эмаль и обмотка из лавсановой нити	0,021,56	120
пэвтл-1	Один слой высокопрочной полиуретановой эмали	0,051,56	130
пэвтл-2	Два слоя высокопрочной полиуретановой эмали	0,051,56	130
ПЭВТЛК	Высокопрочная эмаль на основе полиуретана и полиамидной смолы	0,060,35	130
пэл	Лак на масляной основе	0,022,5	105
пэло	Лак на масляной основе и обмотка из полиэфирной нити	0,051,56	105
ПЭЛЛО	Лак на масляной основе и обмотка из лавсановой нити	0,061,56	105
ПЭЛР	Высокопрочная эмаль на основе полиамида и резольной смолы	0,062,5	120
пэлшко	Лак на масляной основе и обмотка из капронового волокна	0,12,1	105
ПЭМ-1	Один слой высокопрочной эмали ВЛ-941	0,022,5	105
ПЭМ-2	Два слоя высокопрочной эмали ВЛ-941	0,022,5	105
ПЭС-1	Один слой высокопрочного лака на основе поливинилформаля	0,062,5	105
ПЭС-2	Два слоя высокопрочного лака на основе поливинилформаля	0,062,5	105

Марка провода	Характеристика изоляции	Диаметр про- волоки, мм	Максимальная рабочая температура, °С
пэтло	Высокопрочный нагревостойкий лак на основе полиэфиров и об- мотка из лавсановой нити	0,060,52	120
псд	Два слоя обмотки из стекловолокна с пропиткой нагревостойким лаком	0,55,2	155
псдк	Два слоя обмотки из стекловолокна с пропиткой кремнийорга- ническим лаком	0,55,2	180
пнэт	Высокопрочная нагревостойкая эмаль на основе полиамидов	0,062,5	220
пэшо	Лак на масляной основе и один слой шелковых нитей	0,051,56	105
пэьо	Лак на масляной основе и один слой хлопчатобумажной пряжи	0,382,12	105

Таблица 3.2. Основные параметры обмоточных проводов круглого сечения

Номиналь-	Сечение		Диамет	р провод	а с изоляц	ией, мм		Сопротивление	Допустимый ток
ный диаметр провода по меди, мм	провода по меди, мм ²	ПЭВ-1	ПЭВ-2	пэл	ПЭТВ	пнэт	пэлшо	1 м провода [*] при 20°C, Ом	при плотности 2 А/м ² , А
0,02	0,00031	0,027	_	0,035	_	_	-	61,5	0,0006
0,025	0,00051	0,034		0,04	-	_	_	37,16	0,001
0,03	0,00071	0,041	-	0,045	_	_	_	24,7	0,0014
0,032	0,0008	0,043	-	0,046	-	_	_	22,4	0,0016
0,04	0,0013	0,055	-	0,055	-	_		13,9	0,0026
0,05	0,00196	0,062	0,08	0,07	-	_	0,14	9,169	0,004
0,06	0,00283	0,075	0,09	0,085	0,09	_	0,15	6,367	0,0057
0,063	0,0031	0,078	0,09	0,085	0,09	_	0,16	4,677	0,0063
0,07	0,00385	0,084	0,092	0,092	0,1	_	0,16	4,677	0,0071
0,071	0,00396	0,088	0,095	0,095	0,1	_	0,16	4,71	0,0078
0,08	0,00503	0,095	0,105	0,105	0,11	_	0,16	6,63	0,0101
0,09	0,00636	0,105	0,12	0,115	0,12	_	0,18	2,86	0,0127
0,1	0,00785	0,122	0,13	0,125	0,13	0,125	0,19	2,291	0,0157
0,112	0,0099	0,134	0,14	0,125	0,14	0,135	0,2	1,895	0,021
0,12	0,0113	0,144	0,15	0,145	0,15	0,145	0,21	1,591	0,0226
0,125	0,0122	0,149	0,155	0,15	0,155	0,15	0,215	1,4	0,0248
0,13	0,0133	0,155	0,16	0,155	0,16	0,16	0,22	1,32	0,0266
0,14	0,0154	0,165	0,17	0,165	0,17	0,165	0,23	1,14	0,0308

Номиналь- ный диаметр	Сечение		Диамет	р провода	а с изоляц	ией, мм			Допустимый то
провода по меди, мм	провода по меди, мм ²	ПЭВ-1	ПЭВ-2	пэл	ПЭТВ	пнэт	пэлшо	1 м провода при 20°C, Ом	при плотности 2 А/м ² , А
0,15	0,01767	0,176	0,19	0,18	0,19	0,18	0,24	0,99	0,0354
0 1,6	0,02011	0 1,87	0,2	0 1,9	0,2	0 1,9	0,25	0,873	0,0402
0 1,7	0,0227	0 1,97	0,21	0,2	0,21	0,2	0,26	0,773	0,0454
0,18	0,02545	0,21	0,22	0,21	0,22	0,21	0,27	0,688	0,051
0,19	0,02835	0,22	0,23	0,22	0,23	0,22	0,28	0,618	0,0568
0,2	0,03142	0,23	0,24	0,23	0,24	0,23	0,3	0,558	0,0628
0,21	0,03464	0,24	0,25	0,25	0,25	0,25	0,31	0,507	0,0692
0,224	0,0394	0,256	0,27	0,26	0,27	0,26	0,32	0,445	0,079
0,236	0,0437	0,26	0,285	0,27	0,28	0,27	0,33	0,402	0,0875
0,25	0,04909	0,284	0,3	0,275	0,3	0,29	0,35	0,357	0,0982
0,265	0,0552	0,305	0,315	0,305	0,31	0,3	0,36	0,318	0 1,1 1
0,28	0,0615	0,315	0,33	0,315	0,33	0,31	0,39	0,285	0 1,24
0,3	0,0708	0,34	0,35	0,34	0,34	0,33	0,41	0,248	0,143
0,315	0,078	0,35	0 365	0 3,52	0,36	0 35	0 4,3	0 2,25	0,158
0,335	0,0885	0,375	0,385	0,375	0,38	0,37	0,45	0 1,98	0 1,79
0,355	0,099	0,395	0,414	0,395	0,41	0,39	0,47	0 1,77	0,2
0,38	0,1134	0,42	0,44	0,42	0,44	0,42	0,5	0,155	0,226
0,4	0 1,26	0,44	0,46	0,442	0,46	0,44	0,52	0 1,4	0,251
0,425	0 ,142	0,465	0,485	0,47	0,47	0,46	0,53	0 1,24	0,283
0,45	0 1,6	0,49	0,51	0,495	0,5	0,5	0,57	0 1,1	0,319
0,475	0 1,77	0,525	0,545	0,495	0,53	0,51	0,6	0,099	0,353
0,5	0 1,96	0,55	0,57	0,55	0,55	0,53	0,62	0,09	0,392
0,53	0,2206	0,58	0,6	0,578	0,6	0,58	0,66	0,0795	0,441
0,56	0,247	0,61	0,63	0,61	0,62	0,6	0,68	0,071	0,494
0,6	0,283	0,65	0,67	0,65	0,66	0,64	0 72	0,062	0,566
0,63	0,313	0,68	0,7	0,68	0,69	0,67	0,75	0,056	0,626
0,67	0,352	0,72	0,75	0,72	0,75	0,72	0,8	0,05	0,704
0,71	0,398	0,76	0,79	0,77	0,78	0,75	0,82	0,044	0,797

Номиналь-	Сечение		Диаметр	о провода	а с изоляц	лей, мм		Сопротивление	Долустимый ток
ный диаметр провода по меди, мм	провода по меди, мм ²	ПЭВ-1	пэв-2	пэл	пэтв	пнэт	пэлшо	1 м провода при 20°C, Ом	при плотности 2 А/м ² , А
0,75	0,441	0,81	0,84	0,81	0,83	8,0	0,87	0,039	0,884
0,8	0,503	0,86	0,89	0,86	0,89	0,86	0,95	0,035	1,0
0,85	0,567	0,91	0,94	0,91	0,94	0,91	1,0	0,031	1,13
0,9	0,636	0,96	0,99	0,96	0,99	0,96	1,05	0,0275	1,27
0,93	0,6793	0,99	1,02	0,99	1,02	0,99	1,08	0,0253	1,33
0,95	0,712	1,01	1,04	1,02	1,04	1,01	1,1	0,0248	1,42
1,0	0,7854	1,07	1,1	1,07	1,11	1,06	1,16	0,0224	1,57
1,06	0,884	1,13	1,16	1,14	1,16	1,13	1,21	0,0199	1,765
1,08	0,9161	1,16	1,19	1,16	1,19	1,16	1,24	0,0188	1,83
1,12	0,9852	1,19	1,22	1,2	1,23	1,2	1,28	0,0178	1,97
1,18	1,092	1,26	1,28	1,26	1,26	1,25	1,34	0,0161	2,185
1,25	1,2272	1,33	1,35	1,33	1,36	1,33	1,41	0,0143	2,45
1,32	1,362	1,4	1,42	1,4	1,42	1,39	1,47	0,0129	2,72
1,4	1,5394	1,48	1,51	1,48	1,51		1,56	0,0113	3,078
1,45	1,6513	1,53	1,56	1,53	1,56	-	1,61	0,0106	3,306
1,5	1,7672	1,58	1,61	1,58	1,61	1	1,68	0,0093	3,534
1,56	1,9113	1,63	1,67	1,64	1,67	-	1,74	0,00917	3,876
1,6	2,01	1,68	1,71	1,68	1,71	-	_	0,0086	4,03
1,7	2,2697	1,78	1,81	1,78	1,81		_	0,0078	_
1,74	2,378	1,82	1,85	1,82	1,85	1		0,00737	-
1,8	2,54468	1,89	1,92	1,89	1,92	1	-	0,00692	-
1,9	2,8105	1,99	2,02	1,99	2,02	ı	-	0,00612	-
2,0	3,1415	2,1	2,12	2,1	2,12	1	_	0,00556	-
2,12	3,5298	2,21	2,24	2,22	2,24	_	_	0,00495	-
2,24	4,0112	2,34	2,46	2,34	2,46	_	_	0,00445	-
2,36	4,3743	2,46	2,48	2,36	2,48	-		0,00477	-
2,5	4,9212	2,6	2,63	2,6	2,62	_	_	0,00399	

Таблица 3.3. Техническая характеристика обмоточных проводов

№ п/п	Марка провода	провода Температурный индекс, °С Характеристика Применение		Применение	Толщина изоляции, мм	Размеры по сто- роне, мм	Диаметр провода, мм
1.	ПЭТ-155	155	Провод медный круглый эмалированный. Поли- эфир-имидная изоляция.	Провод предназначен для изготовления об- моток электрических машин, аппаратов и приборов.	-0,085 Пробивное напря- жение 4400 В	-	0,2502,000
2.	ПЭТМ-155	155	обеспечивает хорошую на- мотку, устойчив к воздей- ствию пропиточных лаков	***			
3.	ПЭТ-200	200	Провод медный круглый эмалированный. Полиамидимидная изоляция. Обеспечивает хорошую намотку, устойчив к воздействию пропиточных лаков	Провод предназначен для изготовления об- моток электрических машин, аппаратов и приборов	0,094 Пробивное напря- жение 4700 В	-	0,2502,000
4.	ПЭТ-155-Л	155	Провод медный круглый обслуживающийся с эмалевой изоляцией	Провод предназначен для изготовления об- моток электрических машин, аппаратов и приборов	-	-	0,2502,000
5.	ПЭЭИ-1-180 ПЭЭИ-2-180	180	Провод медный круглый эмалированный, теплоустойчивый	Провод предназначен для изготовления об- моток электрических машин, аппаратов и приборов, с термическими и механическими нагрузками	-	-	0,2502,000
6.	ПЭТВ-1	130	Провода медные круглые с эмалевой изоляцией на ос- нове полиэфиров	Провод предназначен для изготовления об- моток электрических машин, аппаратов и приборов, для механизированной намотки	0,068 Пробивное напря- жение 2700 В	-	0,2502,000
7.	пЭтв-2	130		изделий	0,093 Пробивное напря- жение 4 900 В		
3.	ПЭТВМ	130	Провод повышенной механической прочности	Провод предназначен для механизированной намотки статоров электродвигателей серии 4 A	0,110 Пробивное напря- жение 4900 В	-	0,2501,400

№ п/п	Марка провода	Температурный индекс, *С	Характеристика	Применение	Толщина изоляции, мм	Размеры по сто- роне, мм	Диаметр провода, мм
9.	ПЭТД-1-200	200	Провод медный круглый эмалированный, теплоус- тойчивый	Провод предназначен для механизированной намотки, обмоток электрических машин, аппаратов, трансформаторов, работающих в	0,124 Пробивное напря- жение 7600 В	-	0,2502,000
	ПЭТД-2-200			среде трансформаторного масла, для кату- шек с высокими термическими и механиче- скими нагрузками	_		
10.	ПЭТД-180	180	Провода медные круглые с двухслойной изоляцией	Провод предназначается для механизированной намотки, обмоток электрических машин, аппаратов, трансформаторов, работающих в среде трансформаторного масла	0,070 Пробивное напря- жение 4000 В	1	0,2502,000
11.	пэткд	-	Провод медный круглый с эмалевой нагревостойкой изоляцией с дополнительным клеящим слоем	1	-	_	0,2500,450
12.	ПЭФ-155	155	Провод медный круглый эмалированный фреоно- стойкий	Провод предназначен для изделий, работающих в среде хладона 12, 22, 134/1. масел XФ-12-16, Xф-22-24 и трансформаторного	0,076 Пробивное напря- жение 4000 В	-	0,0631,80
13.	ПЭФ-180	180		масла	0,070 Пробивное напря- жение 4600 В	-	0,2501,80
14.	ПЭФД-1-155 ПЭФД-2-155	155	Провод медный круглый эмалированный, фреоностойкий с двойной изоляцией	Провод предназначен для механизированной намотки изделий, работающих в среде хладона 12, 22, 134/1. масел ХФ-12-16, Хф-22-24 и трансформаторного масла.	-	-	0,2501,600
15.	ПЭФД-2-180	180	Провод медный круглый эмалированный с двух- слойной изоляцией фрео- ностойкий		-	-	0,2501,600
16.	ПЭТД-К-200	200	Провод медный круглый с двухслойной изоляцией, с дополнительным клеящим слоем	1 .	_	_	0,254; 0,287; 0,320; 0,361

№ п/п	Марка провода	Температурный индекс, °С	Характеристика	Применение	Толщина изоляции, мм	Размеры по сто- роне, мм	Диаметр провода, мм
17.	пээип-1-155	155	Провода медные с эмалевой изоляцией прямоугольные	Провод предназначен для изготовления об- моток электрических машин, аппаратов и приборов	-	а — 0,802,00 в — 2,008,00	
18.	пэтп-155	155	Провод медный прямо- угольного сечения, эмали- рованный лаком на основе модифицированных поли- эфиров	Провод предназначен для изготовления обмоток электрических машин, алпаратов и приборов ТИ-155	-	а — 0,803,55 в — 2,005,60	-
19.	птенп	220	Провода медные никелированные прямоугольные эмалированные лаком на основе полиамидов	Провод предназначен для намотки изделий	-	а — 0,501,90 в — 2,004,00	-
20.	псдт	155	Провод медный нагрево- стойкий с утонченной изо-	Провод предназначен для обмоток электрических машин, приборов и аппаратов	-	а — 1,005,60 в — 2,1212,50	2,005,20
21.	псдкт		ляцией из стеклянных нитей, наложенных двумя слоями с подклейкой и пропиткой нагревостойким лаком или компаундом		_	-	2,655,20
22.	АПСД	155	Провод алюминиевый на- гревостойкий, изолирован- ный двумя слоями стекло- волокна с подклейкой и пропиткой глифталевым лаком	Провод предназначен для обмоток электро- сварочного оборудования	-	а — 2,005,60 в — 5,6014,00	
23.	пэтвсд пэтсдт	155	Провод медный, обмоточный, изолированный полизфирной змалью и двумя слоями стекловолокна с подклейкой и пропиткой глифталевым лаком	Провод предназначен для изготовления об- моток электрических машин	-	а — 0,903,55 в — 2,8010,00	0,8852,50

№ n/n	Марка провода	Температурный индекс, °С	Характеристика	Применение	Толщина изоляции, мм	Размеры по сто- роне, мм	Диаметр провода, мм	52
24.	ппи-у		Провод обмоточный тепло- стойкий с пленочной поли- миднофторо-пластовой изоляцией	Провод предназначен для намотки статоров погружных маслозаполненных электродвигателей и эксплуатации при температуре 200 °C. Минимальная температура окружающей среды до ~60 °C. Пробивное напряжение изоляции проводов не менее 12 кВ. Электрическое сопротивление изоляции 1 км провода не менее 200 МОм		-	2,003,15	
25.	пь	-	Провода обмоточные с бу-	Изготовление обмоток, электрических ма-	0,30	_	1,405,20	
			мажной изоляцией	шин, аппаратов и трансформаторов	0,72		2,504,50	ω
		-			0,45; 0,55; 0,72; 0,96; 1,20; 1,35; 1,68; 1,92; 2,48;2.96	a - 1,125,60 6 - 4,0016,0	-	Обмоточные
26.	ПЕХ	-	Провода обмоточные с бу- мажной изоляцией		1,35; 2,00 2,46; 2,96	a - 1,125,60 6 - 4,0016,0	-	
27.	АПБ	-	Провода обмоточные с бу-		0,30	_	1,806,00	odu
			мажной изоляцией		0,45; 0,55; 0,72; 0,96; 1,20; 1,35; 1,68; 1,92	a - 1,805,60 6 - 4,0016,0	· <u>-</u>	провода
28.	пБПУ	-	Провод медный обмоточный подразделенный с бумажной изоляцией	Изготовление обмоток мощных трансформаторов и реакторов	1,36;2, 00; 2,48; 2,96 Количество провод- ников — 2 или 3	a - 1,404,25 6 - 7,5019,5	_	
29.	пьд	_	Провод обмоточный с хлопчатобумажной изоля- цией	Изготовление обмоток электрических машин, аппаратов и приборов	-	a - 1,325,60 6 - 4,2514,0	-	
30.	ппльо	_	Провод обмоточный медный прямоугольного сечения с пленочной изоляцией	Изготовление обмоток электрических машин, аппаратов и приборов	_	a - 1,002,80 6 - 4,507,50	_	

№ п/п	Марка провода	Температурный индекс, °С	Характеристика	Применение	Толщина изоляции, мм	Размеры по сто- роне, мм	Диаметр провода, мм	
31.	псдкт псдт	180 и 155	Провод медный обмоточный со стекловолокнистой изоляцией	Изготовление обмоток, электрических ма- шин, аппаратов, приборов и трансформато- ров	_	a - 0,905,60 6 - 2,1212,50	0,855,20	
32.	АПСДКТ		Провод алюминиевый со стекловолокнистой изоля- цией	Изготовление обмоток, электрических ма- шин, аппаратов, приборов и трансформато- ров	-	a - 1,805,60 6 - 3,3512,50	_	
33.	пэтсд	180 u 155	Провод медный обмоточный с эмалево-стеклово- локнистой изоляцией	Изготовление обмоток высоковольтных электрических машин	_	a - 0,803,55 6 - 2,209,50	0,852,50	
34.	ППИПК-Т	200	Провод обмоточный прямоугольный нагревостой- кий Медная жила, поли-	Провода предназначены для изготовления тяговых электродвигателей железнодорожного и городского транспорта;	0,16 Пробивное напря- жение 750 В	a - 1,124,00 6 - 3,3510,00	_	3. Обмог
35.	ППИПК-1		амидно-фторопластовая пленка	электрических машин карьерного оборудования; специальных типов электрических машин, обладающих уникальными характеристиками	0,23 Пробивное напря- жение 1300 В			Обмоточные
36.	ппипк-2				0,30 Пробивное напря- жение 1800 В			провода
37.	ппи-у	200	Провод обмоточный тепло- стойкий с пленочной поли- амидно-фторопластовой изоляцией	Для намотки статоров погружных маслоза- полненных электродвигателей нефтедобычи	-	-	2,003,15	
38.	ПЭИ-200М	200	Провод обмоточный тепло- стойкий с эмалево-пленоч- ной полиамиднофторопла- стовой изоляцией	То же	-	-	2,003,15	
39.	пэвсок	_	Провода константановые обмоточные нагревостой- кие	Изготовление обмоток, электрических ма- шин, аппаратов	-	-	0,100,12	53

Таблица 3.4. Размеры медной проеолоки прямоугольного сечения

(обозначения: а — меньшая сторона (толщина), мм; б — большая сторона (ширина), мм; S — площадь сечения с учетом скругления углов, мм²)

а	б	S	а	6	S
0,8	2,00	1,46	0,85	5,00	4,10
	2,12	1,56		5,60	4,61
	2,24	1,66		6,30	5,20
	2,36	1,75	0,90	2,00	-1,63
	2,50	1,86		2,12	1,73
	2,65	1,98		2,24	1,84
	2,80	2,10	7	2,36	1,95
	3,00	2,26		2,50	2,08
	3,15	2,38		2,65	2,11
	3,35	2,54		2,80	2,35
	3,50	2,70		3,00	2,53
	3,75	2,86		3,15	2,66
	4,00	3,06		3,35	2,84
	4,25	3,26		3,50	3,02
	4,50	3,46		3,75	3,20
	4,75	3,66		4,00	3,43
	5,00	3,86		4,25	3,65
	5,30	4,10		4,50	3,88
	5,60	4,34		4,75	4,10
	6,00	4,66		5,00	4,33
	6,30	4,90		5,30	4,60
0,85	2,00	1,55		5,60	4,87
	2,24	1,75		6,00	5,23
	2,50	1,97		6,30	5,50
	2,80	2,23		6,70	5,86
	3,15	2,52		7,10	6,22
	3,55	2,86	0,95	2,00	1,71
	4,00	3,25		2,24	1,93
	4,50	3,67		2,50	2,18

а	б	S		a	б	S					
0,95	2,80	2,47		1,00	7,10	6,89					
	3,15	2,80			7,50	7,29					
	3,55	3,18			8,00	7,79					
	4,00	3,61		1,06	2,00	1,91					
	4,50	4,08			2,24	2,16					
	5,00	4,57			2,50	2,44					
	5,60	5,13			2,80	2,75					
	6,30	5,79			3,15	3,12					
	7,10	6,55			3,55	3,55					
1,00	2,00	1,79	į		4,00	4,03					
	2,12	1,91			4,50	4,56					
	2,24	2,03			5,00	5,09					
	2,36	2,15			5,60	5,72					
	2,50	2,29			6,30	6,46					
	2,65	2,44			7,10	7,31					
	2,80	2,59			8,00	8,27					
	3,00	2,79							1,08	8,60	9,08
	3,15	2,94			1,12	2,00	2,03				
	3,35	3,14			2,12	2,16					
	3,50	3,34			2,24	2,29					
r.	3,75	3,54			2,36	2,43					
	4,00	3,79			2,50	2,59					
	4,25	4, 04			2,65	2,75					
	4,50	4,29			2,80	2,82					
	4,75	4,54			3,00	3,15					
	5,00	4,79			3,15	3,31					
	5,30	5,09			3,35	3,54					
	5,60	5,39			3,50	. 3,76					
	6,00	5,79			3,75	3,99					
	6,30	6,09			4,00	4,27					
	6,70	6,49			4,25	4,55					

a	6	S	a	6	S
1,12	4,50	4,83	1,25	2,50	2,91
	4,75	5,11		2,65	3,10
	5,00	5,39		2,80	3,29
	5,30	5,72		3,00	3,54
	5,60	6,06		3,15	3,72
	6,00	6,51		3,35	3,97
	6,30	6,84		3,50	4,22
	6,70	7,29		3,75	4,47
	7,10	7,74		4,00	4,79
	7,50	8,19		4,25	5,10
Į l	8,00	8,75		4,50	5,41
	8,50	9,31		4,75	5,72
	9,00	9,87		5,00	6,04
1,18	2,00	2,15		5,30	6,41
	2,24	2,43		5,60	6,79
	2,50	2,74		6,00	7,29
	2,80	3,09		6,30	7,66
-	3,15	3,50		6,70	8,16
	3,55	3,97		7,10	8,66
	4,00	4,51		7,50	9,16
	4,50	5,10		8,00	9,79
	5,00	5,69	Ī	8,50	10,41
	5,60	6,39		9,00	11,04
	6,30	7,22		9,50	11,66
	7,10	8,16		10,00	12,29
	8,00	9,23	1,32	2,00	2,43
Ī	9,00	10,41		2,24	2,74
1,25	2,00	2,29		2,50	3,09
Ī	2,12	2,44	•	2,80	3,48
Ī	2,24	2,59		3,15	3,94

		3. OUMUITI	ОЧПЫ	е провода		57	
a	б	S		a	б	s	
1,32	4,00	5,97		1,40	7,10	9,73	
	4,50	5,73			7,50	10,29	
	5,00	6,39			8,00	10,99	
	5,60	7,18			8,50	11,69	
	6,30	8,10			9,00	12,39	
	7,10	9,16			9,50	13,09	
	8,00	10,35			10,00	13,79	
	9,00	11,67			10,60	14,63	
	10,00	12,99			11,20	15,47	
1,40	2,00	2,59		1,50	2,24	3,15	
	2,12	2,75			2,50	3,54	
	2,24	2,92			2,80	3,99	
	2,36	3,09			3,15	4,51	
	2,50	3,29			3,55	5,11	
	2,65	3,50			4,00	5,79	
	2,80	3,71			4,50	6,54	
	3,00	3,99			5,00	7,29	
	3,15	4,20			5,60	8,19	
	3,35	4,48			6,30	9,24	
	3,50	4,76			7,10	10,44	
	3,75	5,04			8,00	11,79	
	4,00	5,39] [9,00	13,23	
	4,25	5,74				10,00	14,79
	4,50	6,09			11,20	16,59	
	4,75	6,44			12,50	18,50	
	5,00	6,79		1,60	2,24	3,37	
	5,30	7,21			2,36	3,56	
	5,60	7,63			2,50	3,79	
	6,00	8,19			2,65	4,03	
	6,30	8,61			2,80	4,27	
	6,70	9,17			3,00	4,59	

			1			
a	б	S	.	a	6	S
1,60	3,15	4,83		1,70	5,00	8,14
	3,35	5, 15			5,60	9,16
	3,50	5,47			6,30	10,35
	3,75	5,79		-	7,10	11,71
	4,00	6,19			8,00	13,24
	4,25	6,59			9,00	14,94
	4,50	6,99			10,00	16,44
	4,75	7,39			11,20	18,68
	5,00	7,79			12,50	20,89
	5,30	8,27		1,80	2,50	4, 1.4
	5,60	8,75			2,65	4,41
	6,00	9,39			2,80	4,68
	6,30	9,87			3,00	5,04
	6,70	10,51			3,15	5,31
	7,10	11,15			3,35	5,67
	7,50	11,79			3,50	6,03
	8,00	12,59			3,75	6,39
	8,50	13,39			4,00	6,84
	9,00	14,19			4,25	7,29
	9,50	14,99			4,50	7,74
	10,00	15,79			4,75	8,19
	10,60	16,75			5,00	8,64
	11,20	17,71			5,30	9,18
	11,80	18,67			6,00	10,44
	12,50	19,79			6,30	10,98
1,70	2,50	3,89			6,70	11,70
	2,80	4,40			7,10	12,42
	3,15	4,99			7,50	13,14
	3,55	5,67			8,00	14,04
	4,00	6,44			8,50	14,94
	4,50	7,29			9,00	15,84

а	б	S		а	6	S
1,80	9,50	16,74		2,00	4,00	7,64
	10,00	17,64			4,25	8,14
	10,60	18,72			4,50	8,64
	11,20	19,80			4,75	9,14
	11,80	20,88			5,00	9,64
	12,50	22,14			5,30	10,24
	. 13,20	23,40			5,60	10,84
	14,00	24,84		i	6,00	11,64
1,81	4,40	7,75			6,30	12,24
	6,90	12,27			6,70	13,04
1,90	2,80	4,96			7,10	13,84
	3,15	5,62			7,50	14,64
	3,55	6,38			8,00.	15.64
	4,00	7,24			8,50	16,64
	4,50	8,19			9,00	17,64
	5,00	9,14			9,50	18,64
	5,60	10,28			10,00	19,64
	6,30	11,61			10,60	20,84
	7,10	13,13			11,20	22,04
	8,00	14,84			11,80	23,24
	9,00	16,74			12,50	24,64
	10,00	18,64			13,20	26,04
	11,20	20,92			14,00	27,64
	12,50	23,39			15,00	29,64
	14,00	26,24			16,00	31,64
2,00	2,80	5,24		2,12	3,15	6,32
	3,00	5,64			3,55	7,16
	3,15	5,94			4,00	8,12
	3,35	6,34	Ï		4,50	9,18
	3,50	6,74			5,00	10,24
	3,75	7,14			5,60	11,51
			-0	·	i e	i

a 6 S 2,12 6,30 12,99 7,10 14,69 11,80 26,07 8,00 16,60 12,50 27,64 9,00 18,72 13,20 29,21 10,00 20,84 14,00 31,00 11,20 23,38 15,00 33,24 12,50 26,14 16,00 35,48 12,50 26,14 16,00 35,48 14,00 29,32 2,36 3,55 7,83 16,00 33,56 4,00 8,89 2,24 3,15 6,69 4,50 10,07 3,75 8,04 4,50 10,07 4,25 9,16 4,25 9,16 8,00 18,33 4,50 9,72 9,00 20,69 10,00 23,05 5,00 10,84 11,20 25,88 12,50 28,95 5,00 13,08 16,00 37,21 14,00 32,49	Project -			тыс прососс		
7,10 14,69 11,80 26,07 8,00 16,60 12,50 27,64 9,00 18,72 13,20 29,21 10,00 20,84 14,00 31,00 11,20 23,38 15,00 33,24 12,50 26,14 16,00 35,48 14,00 29,32 2,36 3,55 7,83 16,00 33,56 4,00 8,89 2,24 3,15 6,69 4,50 10,07 3,35 7,14 5,00 11,25 3,50 7,59 5,60 12,67 3,75 8,04 6,30 14,32 4,50 9,72 9,00 20,69 4,75 10,28 10,00 23,05 5,00 10,84 11,20 25,88 5,30 11,51 12,50 28,95 5,60 12,18 16,00 37,21 6,00 13,08 16,00 37,21 6,30 13,75 3,55 8,33 6,70 14,65 3,75 <th>a</th> <th>6</th> <th>S</th> <th>a</th> <th>6</th> <th>S</th>	a	6	S	a	6	S
8,00 16,60 9,00 18,72 10,00 20,84 11,20 23,38 12,50 26,14 14,00 31,00 33,24 15,00 12,50 26,14 14,00 35,48 16,00 35,48 16,00 35,48 16,00 35,48 16,00 35,48 16,00 35,48 16,00 35,48 16,00 35,48 16,00 35,48 16,00 3,55 7,14 5,00 10,07 5,60 11,25 5,60 11,25 5,60 11,26 16,21 8,00 18,33 10,00 23,05 10,00 23,05 10,00 23,05 10,00 23,05 10,00 23,05 11,20 25,88 5,30 11,51 12,50 28,95 14,00 32,49 16,00	2,12	6,30	12,99	2,24	11,20	24,73
9,00 18,72 113,20 29,21 14,00 31,00 11,20 23,38 15,00 33,24 16,00 35,48 16,00 35,48 16,00 33,55 7,83 16,00 33,56 4,00 8,89 4,50 10,07 3,75 8,04 4,00 8,60 4,75 10,28 5,00 11,51 5,60 12,18 6,00 13,08 6,70 14,65 7,10 15,54 7,50 16,44 8,00 17,56 8,50 18,68 9,00 19,80 9,50 20,92 5,30 12,70		7,10	14,69		11,80	26,07
10,00 20,84 14,00 31,00 11,20 23,38 15,00 33,24 15,00 33,24 16,00 35,48 14,00 29,32 16,00 33,56 2,36 4,00 8,89 2,24 3,15 6,69 4,50 10,07 5,60 12,67 3,75 8,04 4,00 8,60 4,25 9,16 4,25 9,16 4,25 9,16 4,75 10,28 5,00 11,51 5,60 12,18 6,00 13,08 6,30 13,75 8,04 11,20 25,88 11,20 25,88 14,00 32,49 6,30 13,75 6,70 14,65 7,10 15,54 7,50 16,44 8,00 17,56 8,50 18,68 9,00 19,80 9,50 20,92 5,30 12,70	ų	8,00	16,60		12,50	27,64
11,20 23,38 15,00 33,24 12,50 26,14 16,00 35,48 14,00 29,32 2,36 3,55 7,83 16,00 33,56 4,00 8,89 2,24 3,15 6,69 4,50 10,07 3,35 7,14 5,00 11,25 3,50 7,59 5,60 12,67 3,75 8,04 6,30 14,32 4,00 8,60 7,10 16,21 4,25 9,16 8,00 18,33 4,50 9,72 10,00 23,05 4,75 10,28 10,00 23,05 5,00 10,84 11,20 25,88 5,30 11,51 12,50 28,95 5,60 12,18 14,00 32,49 6,00 13,08 16,00 37,21 6,30 13,75 2,50 3,55 8,33 7,10 15,54 4,00 9,45 7,50 16,44 4,25 10,08 8,50 18,68		9,00	18,72		13,20	29,21
12,50 26,14 14,00 29,32 16,00 33,56 16,00 33,55 16,00 33,55 16,00 3,55 7,83 4,00 8,89 4,50 10,07 5,00 11,25 3,75 8,04 4,00 8,60 4,25 9,16 4,50 10,00 10,00 23,05 5,00 10,84 5,00 10,84 5,00 11,51 12,50 28,95 5,60 12,18 6,00 13,08 6,00 13,08 6,70 14,65 7,50 16,44 8,50 18,68 9,00 19,80 9,00 11,95 5,00 11,95 11,95 11,95	ı	10,00	20,84		14,00	31,00
14,00 29,32 16,00 33,56 2,24 3,15 6,69 3,35 7,14 3,50 7,59 3,75 8,04 4,00 8,60 4,25 9,16 4,75 10,28 5,00 11,26 8,00 18,33 4,50 9,72 4,75 10,28 5,00 11,51 5,60 12,18 6,00 13,08 6,70 14,65 7,10 15,54 7,50 16,44 8,00 17,56 8,50 18,68 9,00 19,80 9,50 20,92		11,20	23,38		15,00	33,24
16,00 33,56 2,24 3,15 6,69 3,35 7,14 3,50 7,59 3,75 8,04 4,00 8,60 4,25 9,16 4,50 10,00 20,69 4,75 10,28 5,00 10,84 5,30 11,51 5,60 12,18 6,00 13,08 6,70 14,65 7,50 16,44 8,00 17,56 4,50 3,75 8,50 18,68 9,00 11,95 5,00 11,95 5,00 12,18 6,70 14,65 7,50 16,44 8,50 18,68 9,00 19,80 9,50 20,92		12,50	26,14		16,00	35,48
2,24 3,15 6,69 3,35 7,14 3,50 7,59 3,75 8,04 4,00 8,60 4,25 9,16 4,50 9,72 4,75 10,28 5,00 10,84 5,30 11,51 5,60 12,18 6,00 13,08 6,70 14,65 7,50 16,44 8,00 17,56 4,50 3,75 8,50 18,68 9,00 19,80 9,50 20,92		14,00	29,32	2,36	3,55	7,83
3,35 7,14 3,50 7,59 3,75 8,04 4,00 8,60 4,25 9,16 4,50 9,72 4,75 10,28 5,00 10,84 5,30 11,51 5,60 12,18 6,00 13,08 6,70 14,65 7,50 16,44 8,00 17,56 4,25 10,00 2,50 3,55 3,75 8,83 7,10 15,54 7,50 16,44 8,00 17,56 4,50 10,00 2,50 3,55 8,83 4,00 9,45 4,00 9,45 4,50 10,70 8,50 18,68 9,00 19,80 9,50 20,92		16,00	33,56		4,00	8,89
3,50 7,59 3,75 8,04 4,00 8,60 4,25 9,16 4,50 9,72 4,75 10,28 5,00 10,84 5,30 11,51 12,50 28,95 5,60 12,18 6,00 13,08 6,70 14,65 7,50 16,44 8,00 17,56 8,50 18,68 9,00 19,80 9,50 20,92	2,24	3,15	6,69	i L	4,50	10,07
3,75 8,04 4,00 8,60 4,25 9,16 4,50 9,72 4,75 10,28 5,00 10,84 5,30 11,51 5,60 12,18 6,00 13,08 6,70 14,65 7,50 16,44 8,00 17,56 8,50 18,68 9,00 20,69 10,00 23,05 11,20 25,88 12,50 28,95 14,00 32,49 16,00 37,21 2,50 3,55 8,33 4,00 9,45 4,00 9,45 4,50 10,08 4,50 10,70 8,50 18,68 9,00 19,80 9,50 20,92		3,35	7,14		5,00	11,25
4,00 8,60 4,25 9,16 4,50 9,72 4,75 10,28 5,00 10,84 5,30 11,51 5,60 12,18 6,00 13,08 6,70 14,65 7,10 15,54 7,50 16,44 8,00 17,56 8,50 18,68 9,00 19,80 9,50 20,92		3,50	7,59		5,60	12,67
4,25 9,16 4,50 9,72 4,75 10,28 5,00 10,84 5,30 11,51 12,50 28,95 5,60 12,18 6,00 13,08 6,30 13,75 6,70 14,65 7,10 15,54 7,50 16,44 8,00 17,56 8,50 18,68 9,00 19,80 9,50 20,92		3,75	8,04		6,30	14,32
4,50 9,72 4,75 10,28 5,00 10,84 11,20 25,88 5,30 11,51 12,50 28,95 5,60 12,18 6,00 13,08 16,00 37,21 6,30 13,75 6,70 14,65 7,10 15,54 7,50 16,44 8,00 17,56 8,50 18,68 9,00 19,80 9,50 20,92		4,00	8,60		7,10	16,21
4,75 10,28 10,00 23,05 5,00 10,84 11,20 25,88 5,30 11,51 12,50 28,95 5,60 12,18 14,00 32,49 6,00 13,08 16,00 37,21 6,30 13,75 2,50 3,55 8,33 6,70 14,65 3,75 8,83 7,10 15,54 4,00 9,45 7,50 16,44 4,25 10,08 8,00 17,56 4,50 10,70 8,50 18,68 4,75 11,33 9,00 19,80 5,00 11,95 9,50 20,92 5,30 12,70		4,25	9,16		8,00	18,33
5,00 10,84 11,20 25,88 5,30 11,51 12,50 28,95 5,60 12,18 14,00 32,49 6,00 13,08 16,00 37,21 6,30 13,75 2,50 3,55 8,33 6,70 14,65 3,75 8,83 7,10 15,54 4,00 9,45 7,50 16,44 4,25 10,08 8,00 17,56 4,50 10,70 8,50 18,68 4,75 11,33 9,00 19,80 5,00 11,95 9,50 20,92 5,30 12,70		4,50	9,72		9,00	20,69
5,30 11,51 5,60 12,18 6,00 13,08 6,30 13,75 6,70 14,65 7,10 15,54 7,50 16,44 8,00 17,56 8,50 18,68 9,00 19,80 9,50 20,92 12,50 28,95 14,00 32,49 16,00 37,21 2,50 3,55 8,33 4,00 9,45 4,00 9,45 4,50 10,70 5,00 11,95 5,00 11,95 5,30 12,70		4,75	10,28		10,00	23,05
5,60 12,18 6,00 13,08 16,00 37,21 6,30 13,75 6,70 14,65 7,10 15,54 4,00 9,45 7,50 16,44 8,00 17,56 4,50 10,70 8,50 18,68 9,00 19,80 9,50 20,92	Ĭ	5,00	10,84		11,20	25,88
6,00 13,08 6,30 13,75 6,70 14,65 7,10 15,54 7,50 16,44 8,00 17,56 8,50 18,68 9,00 19,80 9,50 20,92 16,00 37,21 2,50 3,55 8,33 3,75 8,83 4,00 9,45 4,25 10,08 4,50 10,70 5,00 11,33 5,00 11,95 5,30 12,70		5,30	11,51		12,50	28,95
6,30 13,75 6,70 14,65 7,10 15,54 4,00 9,45 4,25 10,08 8,00 17,56 8,50 18,68 9,00 19,80 9,50 20,92 5,30 12,70		5,60	12,18		14,00	32,49
6,70 14,65 7,10 15,54 4,00 9,45 7,50 16,44 8,00 17,56 4,50 10,70 8,50 18,68 9,00 19,80 5,00 11,95 9,50 20,92 5,30 12,70		6,00	13,08		16,00	37,21
7,10 15,54 4,00 9,45 7,50 16,44 8,00 17,56 4,50 10,70 8,50 18,68 4,75 11,33 9,00 19,80 5,00 11,95 9,50 20,92		6,30	13,75	2,50	3,55	8,33
7,50 16,44 8,00 17,56 4,50 10,70 8,50 18,68 9,00 19,80 5,00 11,95 9,50 20,92 5,30 12,70		6,70	14,65		3,75	8,83
8,00 17,56 8,50 18,68 9,00 19,80 9,50 20,92 5,30 12,70		7,10	15,54		4,00	9,45
8,50 18,68 9,00 19,80 5,00 11,95 9,50 20,92 5,30 12,70		7,50	16,44		4,25	10,08
9,00 19,80 9,50 20,92 5,00 11,95 5,30 12,70		8,00	17,56		4,50	10,70
9,50 20,92 5,30 12,70		8,50	18,68		4,75	11,33
		9,00	19,80		5,00	11,95
10,00 22,02 5,60 13,45		9,50	20,92		5,30	12,70
		10,00	22,02		5,60	13,45
10,60 23,38 6,00 14,45		10,60	23,38		6,00	14,45

		,	(_,	
а	6	S	а	6	s
2,50	6,30	15,20	2,80	4,00	10,65
	6,70	16,20		4,25	11,35
	7,10	17,20		4,50	12,05
	7,50	18,20		4,75	12,75
	8,00	19,45		5,00	13,45
	8,50	20,70		5,30	14,29
	9,00	21,95		5,60	15,13
	9,50	23,20		6,00	16,25
ļ	10,00	24,45		6,30	17,09
	10,60	25,95		6,70	18,21
i	11,20	27,45	:	7,10	19,33
	11,80	28,95		7,50	20,45
	12,50	30,70		8,00	21,85
	13,20	32,45		8,50	23,25
	14,00	34,45		9,00	24,65
	15,00	36,95		9,50	26,05
	16,00	39,45		10,00	27,45
	20,00	49,52		10,60	29,13
2,65	4,00	10,05		11,20	30,81
	4,50	11,38		11,80	32,49
	5,00	12,70		12,50	34,45
	5,60	14,29		13,20	36,41
	6,30	16,15		14,00	38,65
,	7,10	18,27		15,00	41,45
	8,00	20,65		16,00	44,25
	9,00	23,30	3,00	4,50	12,95
	10,00	25,95		5,00	14,45
	11,20	29,13		5,60	16,25
	12,50	32,58		6,30	18,35
	14,00	36,55		7,10	20,75
	16,00	41,85		8,00	23,45

a	б	S	а	6	S
3,00	9,00	26,45	3,55	5,00	16,20
i	10,00	29,45		5,60	18,21
Ī	11,20	33,05		6,30	20,56
	12,50	36,95		7,10	23,24
	14,00	41,45		8,00	26,25
	16,00	47,45		9,00	29,60
	20,00	59,52		10,00	32,95
	25,00	74,52		11,20	36,97
3,15	4,50	16,63		12,50	41,33
	4,75	14,41		14,00	46,35
·	5,00	15,20		16,00	53,05
	5,30	16,15	3,55	5,00	17,20
	5,60	17,09		5,30	18,27
	6,00	18,35		5,60	19,33
,	6,30	19,50		6,00	20,75
	6,70	20,56		6,30	21,82
	7,10	21,82		6,70	23,24
	7,50	23,08		7,10	24,66
	8,00	24,65		7,50	26,08
	8,50	26,23		8,00	27,85
	9,00	27,80		8,50	29,63
	9,50	29,38		9,00	31,40
	10,00	30,95		9,50	33,18
	10,60	32,84		10,00	34,95
	11,20	34,73		10,60	37,08
	11,80	36,62		11,20	39,21
	12,50	38,83		11,80	41,34
	13,20	41,03		12,50	43,83
	14,00	43,55		13,20	46,31
	15,00	46,70		14,00	49,15
	16,00	49,85		15,00	52,70

a	б	S	a	б	S
3,55	16,00	56,25	4,00	25,00	99,52
3,75	5,60	20,14		28,00	111,9
	6,30	22,77		30,00	119,5
	7,10	25,77	4,25	6,30	25,92
	8,00	29,14		7,10	29,32
	9,00	32,89		8,00	33,14
	10,00	36,64		9,00	37,39
	11,20	41,14		10,00	41,64
	12,50	46,02		11,20	46,74
	14,00	51,64		12,50	52,27
	16,00	59,14		14,00	58,64
4,00	5,60	21,54		16,00	67,14
	6,00	23,14	4,40	6,90	25,90
	6,30	24,34	4,50	6,30	27,49
	6,70	25,94		6,70	29,29
	7,10	27,54		7,10	31,09
	7,50	29,14		7,50	32,89
	8,00	31,14		8,00	35,14
	8,50	33,14		8,50	37,39
	9,00	35,14		9,00	39,64
•	9,50	37,14		9,50	41,89
ı	10,00	39,14		10,00	44,14
·	10,60	41,54		10,60	46,84
	11,20	43,94		11,20	49,54
	11,80	46,34		11,80	52,24
	12,50	49,14		12,50	55,39
	13,20	51,94		13,20	58,54
	14,00	55,14		14,00	62,14
	15,00	59,14		15,00	66,64
	16,00	63,14		16,00	71,40
	20,00	79,52	4,75	7,10	32,87

а	б	S
4,75	8,00	37,14
	9,00	41,89
	10,00	46,64
	11,20	52,34
	12,50	58,52
	14,00	65,64
	16,00	75,14
5,00	7,10	34,64
	7,50	36,64
	8,00	39,14
	8,50	41,14
	. 9,00	44,14
	9,50	46,64
	10,00	49,14
	10,60	52,14
	11,20	55,14
' 	11,80	58,14
	12,50	61,64
	13,20	65,14
	14,00	69,14
	15,00	74,14
	16,00	79,14
	20,00	99,14

а	6	S
5,00	2 5,00	124,1
	30,00	149,1
5,30	8,00	41,54
i	9,00	46,84
, 	10,00	52,14
	11,20	58,50
	12,50	65,39
	14,00	73,94
	16,00	83,34
5,60	8,00	43,94
	8,50	46,74
	9,00	49,54
	9,50	52,34
	10,00	55,14
	10,60	58,50
	11,20	61,86
	11,80	65,22
	12,50	69,14
	13,20	73,06
	14,00	77,54
	15,00	83,14
	16,00	88,74

4. Изоляционные материалы

4.1. Требования к изоляции электрических машин

Изоляция любой детали электрической машины должна сохранять высокую надежность в течение всего периода эксплуатации, поэтому к ней предъявляются разносторонние требования, главным из которых является высокая электрическая прочность.

Если поместить лист электроизоляционного материала между двумя электродами и постепенно повышать напряжение между ними, то при каком-то значении напряжения произойдет пробой: электрический разряд пройдет сквозь слой изоляции и электроды замкнутся. Это напряжение называется пробивным. Чем выше пробивное напряжение, тем больше электрическая прочность изоляции. Современные электроизоляционные материалы обладают очень высоким пробивным напряжением, например пробивное напряжение пленки лавсана толщиной 0,05 мм достигает 9,5 кВ. Однако такое высокое пробивное напряжение имеют изоляционные материалы непосредственно после изготовления. Любые механические воздействия (изгибы, растяжения и т. д.) уменьшают их электрическую прочность.

В процессе сборки различных деталей электрической машины изоляционный материал приходится неоднократно изгибать, формовать, придавать ему нужную конфигурацию, опрессовывать, добиваясь монолитности слоев изоляции. Во время укладки обмотки в пазы ее изоляция подвергается изгибам, растяжению, иногда ударам и другим механическим воздействиям. Поэтому к изоляционным материалам, применяемым в электрических машинах, помимо высокой электрической прочности, предъявляют также ряд требований, определяемых технологией изготовления изоляции: материал должен легко формоваться и сохранять после формовки приданные ему свойства, не повреждаться при перегибах и растяжениях, при сжатии, опрессовке и укладке в пазы.

В процессе работы машины изоляция подвергается вибрации, большим механическим напряжениям при резких изменениях тока, а кроме того, на изоляцию вращающихся деталей электрической машины действуют центробежные силы. Поэтому второе требование к изоляции электрических машин — ее высокая механическая прочность.

С течением времени свойства изоляции ухудшаются. Она высыхает, становится хрупкой, ломкой и теряет механическую и электрическую прочность. Этот процесс называется старением. Процесс старения изоляции ускоряется при ее нагревании. При небольшом нагреве свойства изоляции ухудшаются медленно, но если температура превысит определенный уровень, то этот процесс

резко ускоряется. Уровень длительно допускаемой температуры определяется нагревостойкостью изоляции.

ГОСТ 8865 разделяет все электроизоляционные материалы по нагревостой-кости на семь классов, обозначаемых латинскими буквами: Y, A, E, B, F, H и C. Нагревостойкость изоляционных материалов для классов Y — 90 °C, A — 115 °C, E — 120°, B — 130 °C, F — 150 °C, H — 180 °C, C — более 180 °C.

Нагрев электрической машины определяется не только потерями, но и температурой окружающей среды. Поэтому тепловое состояние машины оценивают по превышению температуры ее частей над температурой окружающего воздуха, которая принимается равной 40 °C. ГОСТ 183 устанавливает предельно допустимое превышение температуры обмоток в зависимости от типа машины и класса нагревостойкости их изоляции.

Способность изоляции проводить теплоту от проводников обмотки к окружающему воздуху называется ее теплопроводностью. Проводники, окруженные слоем изоляции из материала, плохо проводящего теплоту, будут нагреваться сильнее, чем при ее хорошей теплопроводности, их температура возрастает и процесс старения изоляции ускоряется. Чтобы избежать этого, для изоляции применяют материалы с высокой теплопроводностью, а выполняют ее по возможности без включений воздуха. Для этого катушки обмоток после наложения на них изоляции или после укладки обмотки в пазы пропитывают электроизоляционными лаками. Лак заполняет все пустоты между слоями изоляции и проводниками обмотки, повышает теплопроводность и механическую прочность изоляции.

На электрическую прочность изоляции в большей степени влияет содержание в ней влаги, в то же время электрические машины не всегда работают в помещениях с сухим воздухом. Если материал изоляции пористый, то влага из воздуха проникает в его поры и резко уменьшает электрическую прочность. Свойство материала впитывать влагу из воздуха называют гигроскопичностью. Чтобы электрическая прочность изоляции не снижалась во влажных помещениях, она должна быть мало гигроскопична. Это качество изоляции называют влагостойкостью. Пропитка в лаках резко улучшает влагостойкость изоляции, так как лак препятствует проникновению влаги внутрь изоляции.

Таким образом, чтобы при изготовлении обмоток, укладке их в пазы и во время работы машины изоляция сохраняла достаточную электрическую прочность, она должна быть монолитна, иметь высокую механическую прочность, нагревостойкость, теплопроводность, влагостойкость, а в необходимых случаях также маслостойкость и химостойкость.

4.2. Общие сведения

Изоляционные материалы, применяемые для изоляции электрических машин, можно разделить на несколько групп: синтетические; материалы, изготовляемые на основе слюды; стекловолокнистые, т. е. сделанные из стеклянных волокон; и материалы, основой которых служат целлюлоза и хлопчатобумажные

волокна. В некоторых конструкциях для изоляции применяются картоны и материалы, получаемые из асбеста; пряжи, ткани, бумаги.

Основными материалами для изоляции обмоток машин низкого (до 660 В) напряжения являются синтетические: различные полиэтилентерафталатные (ПЭТФ) пленки типа лавсан, полиамидные бумаги, картоны и др.

Пленки имеют малую толщину (0,05—0,06 мм) и большую электрическую прочность. Их применяют в сочетании с подложками из бумаги или картона, улучшающими механические свойства изоляции. При этом электрическая прочность и нагревостойкость такого композиционного материала, как, например, пленкоэлектрокартон, определяются свойствами самой пленки и подложки.

Для изоляции обмоток высоковольтных электрических машин с номинальным напряжением 3000 В и выше применяют изоляционные материалы на основе слюды. Слюда — минерал. Она встречается в природе в виде кристаллов, которые легко расщепляются на пластинки. Тонкие пластинки — лепестки толщиной менее сотой доли миллиметра называют щепаной слюдой. Склеивая лепестки слюды, получают различные электроизоляционные материалы — миканиты. Для увеличения их механической прочности лепестки слюды в некоторых материалах наклеивают на подложку из бумаги или стеклоткани. Подложки предохраняют слюдяной слой от расслаивания при изгибе материала. В зависимости от сорта слюды, способов изготовления, клеящего лака, наличия или отсутствия подложек различают несколько сортов миканита.

Твердые миканиты изготавливают без подложек, горячим прессованием пластинок слюды с термореактивным связующим. Они применяются для получения плоских, не подвергающихся изгибам изоляционных прокладок и имеют большую механическую прочность. К твердым миканитам относится, например, коллекторный, из которого изготавливают прокладки для изоляции коллекторных пластин (ламелей) друг от друга.

Формовочные миканиты в отличие от твердых после изготовления сохраняют способность принимать ту или иную форму при прессовании в нагретом состоянии и сохранять ее после охлаждения. Они применяются в основном для изоляции коллекторов (фигурные коллекторные манжеты), различных втулок, каркасов катушек и других фасонных изоляционных деталей. К особой разновидности формовочного миканита относится микафолий — тонкий листовой материал, состоящий из пластинок слюды, наклеенных на подложку из бумаги или стеклоткани (стекломикафолий). Он используется для изготовления твердой гильзовой изоляции обмоток. Микафолий с бумажной подложкой относится к классу нагревостойкости В. Стекломикафолий в зависимости от связующего состава может быть использован в изоляции классов В, F или Н.

Гибкие миканиты отличаются от твердых и формовочных гибкостью при нормальной температуре, которую сохраняют после нагрева и охлаждения. Они применяются для изоляции различных частей обмоток в пазовой и лобовой частях, прокладок и т. п. Разновидностью гибкого миканита является микалента — ленточный материал из склеенных пластинок слюды с двухсторонней подложкой из микалентной бумаги или стеклоленты (стекломикалента). Толщина микалент 0,13 или 0,17 мм. Их применяют главным образом для изоляции обмоток

высоковольтных машин. В зависимости от клеящего состава и материала подложек микаленты относятся к классам нагревостойкости В, F или Н. Микалента поступает свернутой в ролики и упакованной в плотно закрытые жестяные коробки. Вынутая из коробки микалента должна быть сразу же использована, так как на воздухе она быстро пересыхает и становится непригодной.

Изготовление материалов на основе щепаной слюды — чрезвычайно трудоемкий процесс и до сих пор не механизированный, так как требуется предварительное расщепление кристаллов слюды на пластинки (отсюда название — щепаная слюда), их калибровка и равномерная наклейка по слоям на подложку.

В настоящее время применяют материалы, в которых используются не пластинки слюды, а ее мелкие чешуйки, полученные механическим раздроблением кристаллов. Из чешуек изготавливают слюдинитовую бумагу, которая служит основой для ряда изоляционных материалов, аналогичных миканитам. С помощью связующих материалов и подложек из стеклоткани получают коллекторный и формовочный слюдиниты, гибкие слюдиниты и стеклослюдиниты, слюдинитофолий и стеклослюдинитофолий, слюдинитовые и стеклослюденитовые ленты и другие материалы, вполне заменяющие миканиты. В то же время они намного дешевле и технологичнее, чем изоляционные материалы на основе щепаной слюды.

Из более крупных чешуек слюды изготавливают слюдопластовые материалы, аналогичные слюдинитовым, но имеющим более высокие механические свойства (коллекторный, формовочный прокладочный слюдопласт, слюдопластофолий, слюдопластовые ленты и т. п.). Эти материалы не уступают по своим электрическим свойствам соответствующим сортам миканитов, но превосходят их по гибкости, поэтому широко используются в современных изоляционных конструкциях.

Изоляционные материалы, изготовленные из стеклянного волокна, — стеклоленты и стеклоткани, обладают высокой нагревостойкостью и большой прочностью на разрыв, но они не стойки к истиранию и повреждаются при многократных изгибах. Их используют как вспомогательные при изолировании обмоток, а также в качестве подложек для изготовления стекломиканитов и композиционных материалов на основе слюдинитов, например стеклослюдинита. Пропитка лаком повышает их механическую прочность, но снижает нагревостойкость, так как сами стекловолокнистые материалы имеют большую нагревостойкость, чем пропитывающие лаки.

Среди стекловолокнистых материалов следует выделить стеклоленты из нетканого стекловолокна, имеющие очень большую прочность на разрыв. Их используют для бандажирования лобовых частей обмоток, расположенных на роторах, вместо ранее применявшейся для этой цели стальной бандажной проволоки.

Из целлюлозы делают различные бумаги и электрокартон, а из хлопчатобумажной пряжи — полотна и ленты. Электрическая прочность этих материалов невелика, но они дешевы, легко изгибаются и имеют сравнительно большую механическую прочность. Их применяют для механической защиты других, менее прочных изоляционных материалов и в качестве прокладок. По нагревостойко-

сти они относятся к классу Ү. Пропитка лаком повышает их нагревостойкость до класса А. Пропитанные лаком хлопчатобумажные ткани носят название лакотканей. Раньше их широко применяли в обмотках классов нагревостойкости изоляции А. В изоляции современных машин вместо хлопчатобумажных лент и тканей почти всегда применяют стеклоленты и стеклоткани.

Изоляционные материалы на основе асбеста обладают высокой нагревостойкостью и механической прочностью, но в электрических машинах находят ограниченное применение из-за их низкой теплопроводности и высокой гигроскопичности

4.3. Характеристика изоляционных материалов

4.3.1. Пленкосодержащие материалы

Таблица 4.1. Композиционные материалы на основе полимерных пленок и картона

Марка	Конструкция	Свя- зую- щее	Темпе- ратур- ный ин- декс, °С	Назначение	Толщина, мм	Габариты
Пленкостеклоткань ГТП-2ПЛ (ТУ 16-503.124-78)	Полиэтилентерефта- латная пленка, стек- лоткань, полиэти- лентерефталатная пленка	Полиэфирное связующее	155	Пазовая изоляция электрических машин для ручной изолировки	0,17; 0,20; 0,25	Изготавливается листами размером 450 ×(860—900) мм и в рулонах шириной 900 ±10 мм, намотанных на жесткую втулку с внутренним диаметром (76 ±1) мм
Имидофлекс 292 (ТУ 3491-003-00214639-93)	Полиимидная плен- ка, стеклоткань, по- лиимидная пленка	уковый	180	Пазовая изоляция электрических ма- шин для ручной изо- лировки	0,15; 0,17; 0,2; 0,25; 0,3; 0,35; 0,4; 0,45; 0,50	Изготавливается лис- тами размером от 200 до 900 мм и в руло- нах шириной
Имидофлекс 929 (ТУ 3491-003-00214639-93)	Стеклоткань, поли- амидная пленка, стеклоткань	Поли эфирнокаучуковый состав		Лировки	0,2; 0,25; 0,3; 0,35; 0,4; 0,45; 0,50	900 ±10 мм, намотан- ных на жесткую втул- ку с внутренним диа- метром (76 ±1) мм
Лавитерм-1 (ТУ16-91И37,0249-ОЗТУ)	Один слой поли- имидной пленки. Один или несколько слоев полизтиленте- рефталатной пленки	учуковый 18	155	Пазовая изоляция злектрических ма- шин и аппаратов для ручной и меха- низированной изо- лировки	0,15; 0,19; 0,2; 0,23; 0,25; 0,32; 0,37	Изготавливается в ру- лонах шириной не бо- лее 900 мм, диамет- ром не более 350 мм. Рулоны намотаны на жесткую втулку с
Лавитерм-2 (ТУ16-91И37.0249-ОЗТУ)	Два слоя полиамидной пленки. Один или несколько слоев полиатилентерефталатной пленки	Эпоксиднокаучуковый состав			0,17; 0,19; 0,2; 0,25; 0,27; 0,32; 0,37; 0,43; 0,47	внутренним диамет- ром (76 ±1) мм

	зую- щее	ратур- ный ин- декс, *С	Назначение	Толщина, мм	Габариты
Один слой полиэти- лентерефталатной пленки. Один слой полизфирной бумаги	связующее	155	Пазовая изоляция электрических машин и аппаратов	Марка 51—0, 17; 0,19; 0,25; 0,32; 0,37; 0,42 Марка 51П — 0,18; 0,2; 0,27; 0,33	Изготавливается в ру- лонах шириной не бо- лее 900 мм, диамет- ром от 100 до 350 мм, намотанными на жесткую втулку с внутренним диамет-
Один слой полизти- лентерефталатной пленки, два слоя по- лизфирной бумаги, полизфирное свя- зующее	Полизфирное			Марка 515 — 0,23; 0,25; 0,30; 0,32; 0,37; 0,47 Марка 515 П — 0,23; 0,25; 0,27; 0,35; 0,4	ром (76 ± 1) мм, и в листах с размерами от 200 до 900 мм
Один слой электро-картона, один слой	99	120	Для изоляции обмо- ток электрических	0,17; 0,27; 0,32	Изготавливается в ру- лонах шириной не ме-
латной пленки	вязующ		машин	0,45	нее 450 мм, намотан- ных на жесткую втул- ку с внутренним диа-
	Полизфирное с		Пазовая и межфазная изоляция низковольтных электрических машин	0,17; 0,32; 0,45	метром (76 ±1) мм
Один слой полиэти- лентерефталатной пленки, один слой арамидной бумаги	Полизфирное связующее	155	Пазовая изоляция стержневых обмоток, токопроводящих стержней, применяется в качестве формующего материала в электрических машинах	0,12	Изготавливается в ру- лонах диаметром от 300 до 400 мм и ши- риной не менее 450 мм, намотанных на жесткую втулку с внутренним диамет- ром (76 ± 1) мм
Полиамидная плен- ка, стеклоткань	еское	230	Корпусная изоляция злектрических ма- шин и аппаратов	0,08; 0,10; 0,13; 0,15; 0,17; 0,20	Изготавливается в ру- лонах и роликах диа- метром (100 ±1) мм
	Кремнийорганич связующе			0,17; 0,20	и шириной от 15 до 870 мм, намотанных на жесткую втулку диаметром не менее 30 мм
Пленка ПЭТ (поли- этилентерефталат- ная), стеклоткань, пленка ПЭТ	Полизфирное связующее	155	Пазовая и межфаз- ная изоляция низко- вольтных электриче- ских машин	0,15-0,47	-
Полизфирная бума- га, полизтиленте- рефталатная пленка	Полиэфирн ое связующее	155	Пазовая и межфаз- ная изоляция низко- вольтных электриче- ских машин	0,12	-
	полизфирной бумаги Один слой полизтилентерефталатной пленки, два слоя полизфирное связующее Один слой злектрокартона, один слой полизтилентерефталатной пленки Один слой полизтилентерефталатной бумаги Полиамидная пленка, стеклоткань Пленка ПЭТ (полизтилентерефталатная), стеклоткань, пленка ПЭТ	Один слой полизти- лентерефталатной пленки, два слоя по- лизфирной бумаги, полизфирное свя- зующее Один слой электро- картона, один слой полизтилентерефта- латной пленки Один слой полизти- лентерефталатной пленки, один слой арамидной бумаги Полиамидная плен- ка, стеклоткань Пленка ПЭТ (поли- этилентерефталат- ная), стеклоткань, пленка ПЭТ	Пленка ПЭТ (полизтиная), стеклоткань, пленка ПЭТ Полизфирной бумаги Пленка ПЭТ (полизтиная), стеклоткань, пленка ПЭТ Полизфирной бумаги Ватом бево обножено обно	Один слой полизти- пентерефталатной пленки, два слоя по полизфирное свя- зующее Один слой злектро- картона, один слой полизтилентерефта- латной пленки Один слой полизти- лентерефталатной пленки, один слой арамидной бумаги Один слой полизти- лентерефталатной пленки, один слой арамидной бумаги Один слой полизти- лентерефталатной пленки, один слой арамидной бумаги Один слой полизти- лентерефталатной пленки, один слой арамидной бумаги Один слой полизти- лентерефталатной пленки, один слой арамидной бумаги Один слой полизти- лентерефталатной пленки, один слой арамидной бумаги Один слой полизти- лентерефталатной пленка пэт (поли- этилентерефталат- ная), стеклоткань, пленка пэт (поли- этилентерефталат- ная изоляция изоляция Вазовая и межфаз- ная изоляция В	Полиафирной бумаги Один слой полизтильней два слоя полизфирное связующее Один слой электро-картона, один слой полизтильнетерефталатной полизтильнетерефталатной полизтильнетерефталатной полизтильнетерефталатной полизтильнетерефталатной пленки Один слой полизтильная пленка пат (полизмания пленка, стеклоткань) Один слой полизтильная пленка, стеклоткань Один слой полизтильная пленка пат (полизмания пленка, стеклоткань) Один слой полизтильная пленка пат (полизмания пленка), стеклоткань, пленка пат (полизмания пленка), стеклоткань, пленка пат (полизмания претиденских машин и аппаратов) Пленка пат (полизмания пленка), стеклоткань, пленка пат (полизмания претиденских машин и аппаратов) Пленка пат (полизмания претиденских машин и аппаратов)

Пленкоэлектрокартон

Марка	Конструкция	Свя- зую- щее	Темпе- ратур- ный ин- декс, °С	Назначение	Толщина, мм	Габариты
Синтофлекс	Различные композиции пленки ПЭТ, полизфирной бумаги, электрокартона и полизфирной бумаги	Полизфирное связующее	120, 155, 180	Пазовая и межфазная изоляция низковольтных электрических машин	0,17-0,47	-
Пленкоасбокартон (ТУ 16-503.044-77)	Представляет собой гибкий композиционный материал, состоящий из полизтилентерефталатной пленки толщиной 0,05 мм или 0,1 мм, оклеенной с двух сторон электроизоляционным асбокартоном	-	-	Применяется в качестве электроизоляционного материала в электрических машинах, работающих в интервале температур от —40 °C до 130 °C	0,3; 0,35	Изготавливается в листах размером 490×920; 500×890; 680×890 мм

Таблица 4.2. Основные технические характеристики

Едини
Имидофлекс

Наименова	Наименование показателей			rtn-2n <i>j</i>	1	292		929		пэвс			
Номинальная толщина		мм	0,17	0,20	0,25	0,15; 0,17	0,20- 0,50	0,20- 0,50	0,17	0,27	0,32	0,45	
Массовая	стеклоткани	%	25-50	25-50	25-50	_	-	-	-	-	-	<u> </u>	
Толщина Массовая доля компо- нентов Пробивное напряжение при 15-35 °C, не менее	связующего веще- ства, не более		30	30	30	-	-	-	-	-	_	-	
	летучих веществ, не более		0,5	0,5	0,5	-	_	-	-	_	-	-	
'	до перегиба	кВ	13	13	13	11	13	13	7,0	8,0	11,0	8,5	
напряжение при 15–35°C,	после перегиба и прокатки валиком усилием 20 Н		9,0	9,0	9,0	8,0	8,0	8,0	-	-	_	-	
	после перегиба на 180° через собст- венную толщину			-	-	-	-		-	7,0	7,0	9,0	7,5
	после выдержки в течение 6 ч. при 125 °C с последующим перегибом, прокаткой валиком усилием 20 Н, среднее				6,0	6,5	7,5	_	-	-			-
	после выдержки в течение 48 ч. при (23±2) °C	l	6,5	7,0	7,5		_	-	7,0	7,0	9,0	7,5	

	Едини-				И	иидофле	Пленкоэлектрокартон				
Наименование показателей	ния мере- ца из-		rtn-2n/	1	292		929	пэк			ПЭВС
Стойкость к надрыву, не менее	Н	300	300	300	200	200	180	150	300	300	300
Жесткость при изгибе, не более	н	165	200	300	-	-	-	-	-	-	-
Удельная разрушающая нагрузка при растяжении, не менее	Н/см	1	-	-	-	_	-	110	170	195	300

	ue xa	эракі	nepu	cmu	ки ла	eum	ерма										
Наименование показателей Единица измере- Лавитерм-1							Лавитерм-2										
Номинальная толщина	мм	0,15	0,19	0,20	0,23	0,25	0,32	0,37	0,17	0,19	0,20	0,20	0,27	0,32	0,37	0,43	0,47
Удельная разрушающая нагрузка при растяжении, не менее	Н/см	130	170	180	190	200	210	300	170	190	200	210	230	320	340	380	400
Жесткость при сжатии коль- ца, не менее	н	100	200	250	300	350	450	950	150	200	250	300	350	650	800	1000	1100
Пробивное напряжение не менее, при 15-35°C	кВ	11	12	11	13	14	19	22	11	13	13	15	17	20	22	25	27

Таблица 4.4. Основные технические характеристики пленкосинтокартона 51

Наименование показателей Номинальная толщина		Единица	Пленкосинтокартон											
		измерения мм			51		51Π							
			0,17	0,19	0,25	0,32	0,37	0,42	0,18	0,20	0,27	0,33		
Удельная разрушаю- щая нагрузка при рас- тяжении, не менее	Н/см	180	190	220	250	300	350	180	190	250	300			
	поперечное направление		180	190	2 30	250	300	350	180	190	250	300		
Стойкость к надрыву, не менее		н	300	350	600	800	900	950	300	350	800	900		
Пробивное напряжение, не менее при 15–35°C, после перегиба		кВ	119	119	1514	1715	2018	2520	119	119	1715	2018		

Таблица 4.5. Основные технические характеристики пленкосинтокартона 515

University Borgonzana		Единица Пленкосинтокартон							ПСФ				
Наименование пока	ание показателей измере- ния		515				515∏						
Номинальная толщина		ММ	0,23	0,25	0,30	0,32	0,37	0,47	0,25	0,27	0,35	0,40	0,12
нагрузка при растяжении, не менее попер	продольное направление	Н/см	180	190	210	240	280	370	180	190	240	280	60
	поперечное направление		190	210	230	260	30	390	190	210	260	300	60
Стойкость к надрыву, не	менее	н	300	350	500	7 2 0	900	1050	300	350	720	900	-
Пробивное напряже- ние, не менее	при 15-35 °C	кВ	11	1	15	17	20	25	11	11	17	20	6
	после пере- гиба		9	9	13	15	17	18	9	9	15	17	4,5

Таблица 4.6. Основные технические характеристики ленты полиамидной композиционной

Наименование показателей Единица измере- ния			Лента полиамидная композици- онная ЛПМК-Т				Лента полиамидная компо- зиционная ЛПМК-ТТ						
Номинальная толщина		«ММ	0,08	0,10	0,13	0,15	0,17	0,20	0,11	0,13	0,15	0,17	0,20
Удельная разрушающая нагрузка, при 1535°C не менее		Н/см	60	80	100	120	140	160	80	100	130	160	220
Стойкость к надрыву, не менее, сред- няя, при 15—35 °C		Н	120	130	160	180	190	200	140	160	180	190	200
Содержание летучих вещ	еств, не более	%	2	2	2	2	2	2	2	2	2	2	2
Пробивное напряжение, не менее	при 15-35°C	κВ	4,5	4,5	4,5	4,7	4,7	4,7	5,0	5,0	5,2	5,2	5,2
	после переги- ба		2,6	2,6	2,6	2,6	2,6	2,6	2,8	2,8	3,0	3,0	3,0

Таблица 4.7. Основные технические характеристики пленкоасбокартона

	Наименование показателя					
Электрическая	в исходном состоянии при температуре 15—35 °С и от-	средняя	31			
прочность, кВ/мм, не менее	носительной влажности 45-75 %	минимальная	25,5			
	после двух перегибов на 180° через собственную тол-	средняя	25			
	щину	минимальная	20			
	после 24 ч пребывания в камере влажности при темпе-	средняя	25			
	ратуре 20 ±2 °C и относительной влажности 95 ±2 %	минимальная	15			
Жесткость в продол	Жесткость в продольном направлении, кгс, не менее		0,9			
		для толщины 0,35 мм	1,8			

Материал электроизоляционный пленкосодержащий марки изофлекс 151п

Материал электроизоляционный пленкосодержащий марки изофлекс 151π — ТУ 16-96 И05.0245.003 ТУ — представляет собой пропитанную стеклоткань, запрессованную между слоями полиэтилентерефталатной пленки, предназначается для использования в низковольтных электродвигателях и аппаратах с системами изоляции класса нагревостойкости В и F. Выпускается размером от 200 до 900 мм (предельные отклонения ± 30 мм при ширине листа до 500 мм включительно и ± 50 мм при стороне листа свыше 500 мм). Номинальные толщины — $(0,13;\ 0,15:\ 0,17)\ \pm 0,02$ мм; $0,20\ \pm 0,03$.

Таблица 4.8. Основные технические характеристики изофлекс 151п

Наименование п	оказателя	Единица из- мерения	Норма для материала толщиной 0,13—0,50 мм
Стойкость к надрыву, не менее	в продольном направлении	Н	300
	в поперечном направлении	перечном направлении	
Пробивное напряжение, не менее	в исходном состоянии кВ		13
	после перегиба		9
Удельная разрушающая нагрузка при	в продольном направлении	Н/м	140
растяжении в исходном состоянии, не менее	в поперечном направлении		100
Относительное удлинение при разры-	в продольном направлении	%	3
ве в исходном состоянии, не менее	в поперечном направлении		2

Пленкоасбокартон

Пленкоасбокартон — ТУ 16-503.044-77 — гибкий композиционный материал, состоящий из полиэтилентерефталатной пленки толщиной 0,05 мм или 0,1 мм, оклеенной с двух сторон электроизоляционным асбокартоном. Применяется в качестве электроизоляционного материала в электрических машинах, работающих в интервале температур от -40 °C до 130 °C. Выпускается размером $(490\times920; 500\times890; 680\times890) \pm 10$ мм; толщиной — $(0.3; 0.35) \pm 0.03$ мм.

Таблица 4.9. Основные технические характеристики пленкоасбокартона

	Наименование показателя		Единица измерения	Норма
Электрическая	в исходном состоянии при температу-	средняя	кВ/мм	31
прочность, не менее	ре (15-35) °С и относительной влаж- ности 45-75 %	минимальная		25,5
	после двух перегибов на 180° через	средняя	кВ/мм	25
	собственную толщину	минимальная		20
	после 24 ч пребывания в камере влаж-	средняя	кВ/мм	25
	ности при температуре (20 ±2) °С и относительной влажности (95 ±2) %			15
Жесткость в продольном направлении, не менее		для толщины 0,3 мм	KCC	0.9
		для толщины 0,35 мм		1,8

4.3.2. Слюдосодержащие материалы

Миканиты

Миканиты — слоистый электроизоляционный материал, изготовленный методом ручной или механической клейки слюды на глифталевом, кремнийорганическом, масляно-битумном клеящем лаке с последующей печной или воздушной сушкой либо с горячим прессованием. Миканиты применяются в качестве электроизоляционного материала в электрических машинах и аппаратах.

Миканиты подразделяются на гибкие, прокладочные и формовочные.

Миканиты гибкие (ГФС, ГФК, ГМС) — ГОСТ 6120-75 — изготавливаются толщиной от 0,15 до 0,50 мм методом ручной клейки слюды с кремнийорганическим, глифталевым и масляно-битумным связующим с последующей горячей подпрессовкой. Они имеют хорошие механические показатели, могут быть использованы в качестве электроизоляции в аппаратах любой конфигурации. Длительно допустимая рабочая температура до 130 °С. Выпускаются в листах 450×1100 мм.

Миканиты прокладочные — ПМГ (на основе слюды мусковит), ПФК, ПФГ (на основе слюды флогопит) — ГОСТ 6121-75 — изготавливаются толщиной от 0,15 до 5,0 мм путем горячего прессования механической раскладки слюды с кремнийорганическим или глифталевым связующим. Имеют повышенную устойчивость к расслоению и применяются в качестве электроизоляционных прокладок и шайб. Длительно допустимая рабочая температура до 130 °С. Выпускаются в листах 550×900 мм.

Миканиты формовочные — $\Phi\Phi\Gamma$, $\Phi\Phi$ К, $\Phi\Phi$ КА (миканит на основе слюды флогопит), Φ МГА Φ МГ (миканит на основе слюды мусковит) — ГОСТ 6122-75 — изготавливаются толщиной от 0,15 до 1,5 мм аналогично прокладочным миканитам. Имеют повышенную нагревостойкость и хорошие электрические показатели. Длительно допустимая рабочая температура до 130 °C. Выпускаются в листах 550×900 мм.

Стекломиканиты гибкие (ГФС-ТТ, ГФК-ТТ, ГМК-ТТ) — ГОСТ 8727-78 — изготавливаются толщиной от 0,20 до 0,60 мм путем ручной клейки слюды на подложке из стеклоткани с одной или двух сторон с кремнийорганическим и глифталевым связующим с последующей горячей подпрессовкой. Применяются в качестве изоляции обмоток электрических машин при напряжении до 700 В переменного тока и до 1000 В постоянного тока, а также для пазовой изоляции электрических машин. Длительно допустимая рабочая температура (130...180) °С.

Микалента (ЛМЧ-ББ, ЛФЧ-ББ, ЛФК-ТТ, ГФК-ТТ) — ГОСТ 4268-75 — представляет собой ролики электроизоляционного материала шириной от 10 до 30 мм и толщиной от 0,10 до 0,21 мм, изготовленные методом ручной клейки слюды на подложках из стеклоткани или микалентной бумаги с последующей печной или воздушной сушкой. Применяется в качестве обмоточного электроизоляционного материала в электрических машинах и аппаратах (ЛМЧ-ББ — для корпусной изоляции обмоток электрических машин при напряжении переменного тока до 15 кВ). Длительно допустимая рабочая температура до 130 °С.

Таблица 4.10. Толщина и предельные отклонения от номинальной толщины

Manya	Номинальная толщи-	Предель	ьное отклонение, мм
Марка миканита	на, мм	среднее	в отдельных точках
Миканит гибкий ГФК	0,15-0,25	±0,05	±0,12
	0,30-0,50	±0,08	±0,15
Миканит прокладочный ЛМГ	0,15-5,0	±0,05	±0,08
		±0,75	±1,25
Миканит формовочный ФФГ	0,15-0,25	±0,05	±0,10
	0,30-0,35	±0,05	±0,12
	0,40-0,45	±0,06	±0,15
	0,50	±0,08	±0,18
	0,60	±0,09	±0,18
	0,70	±0,10	±0,21
	0,80	±0,12	±0,24
	0,90	±0,13	±0,27
	1,00	±0,15	±0,30
	1,50	±0,22	±0, 4 5
Стекломиканит гибкий ГФС-ТТ	0,20	±0,06	±0,12
	0,25		
	0,30		
	0,35-0,40		
	0,45		
	0,50		
	0,60		
Микалента ЛФК-ТТ	0,10	±0,02	±0,04
	0,11		
	0,13		
	0,15		
	0, 17		
	0,21		

Таблица 4.11. Физико-механические и электрические свойства

Наименование показателя		Единица изме- рения	ГФК	ПМГ	ФФГ	ГФС-ТТ	ЛФК-ТТ
Электрическая прочность в исходном состоянии, при температуре 15—35 °С и относительной влажности 45—75 %, не менее, для толщин, мм	0,15-0,25	кВ/мм	24		35	18	13-24
	0,30-0,50		22	21	30	17–18	_
	0,60-0,70			16–18	25	17	_
Содержание компонентов (для всех толщин)	летучих ве- ществ, не более	%	5	_	1	4	1
	склеивающего вещества		12-31	8-20	14-40	15-30	17–33
	слюды		69-88	80 -92	80-86	40-55	35
Расслаиваемость, не более		%	_	10	_	_	_

Слюдопласты и стеклослюдопласты

Слюдопласты и стеклослюдопласты применяются в качестве межламельной и пазовой изоляции электрических машин.

Таблица 4.12. Технические характеристики некоторых коллекторных слюдопластов

Марка мате- риала	Класс нагрево- стойкости	Температурный индекс, °C	Композиционный состав	Связующее	Толщина, мм
кифЭ	F	155	Слюдобумага	На основе эпоксид- ных смол	0,4-1,5
кифЭ-А	F	155	Слюдобумага, стеклоткань	Эпоксидное	0,7-1,5

Таблица 4.13. Технические характеристики некоторых формовочных слюдопластов

Марка материала	Класс нагре- востойкости	Температур- ный индекс, °С	Композиционный состав	Связующее	Толщина, мм
лПА-ФХА-ПФИФ	н	180	Слюдобумага, стеклоткань, пленка ПЭТ (полиэтиленте- рефталатная)	-	0,4-1,5
ФИФК-ТПл	Н	180	Слюдобумага, стеклоткань, пленка ПЭТ	Кремнийорга- ническое	0,25
Элмика 323 (ФИП-Апл)	Н	180	Слюдобумага, стеклоткань пленка ПЭТ	Кремнийорга- ническое	0,25

Стеклослюдопласты и стеклопленкослюдопласты

Стеклослюдопласты, стеклопленкослюдопласты — прессованные материалы на основе слюдопластовых бумаг, стеклотканей, пропитанных эпоксидным или кремний органическим связующим. Применяются в качестве межламельной и пазовой изоляции электрических машин.

Таблица 4.14. Технические характеристики некоторых стеклослюдопластов и стеклопленкослюдопластов

Марка материала	· · · · · · · · · · · · · · · · · · ·		Композиционный состав	Связующее	Толщина, мм				
ГИП-ТС(в)	F .	155	Слюдобумага, стеклоткань	Полиэфирноэпок- сидное	0,25-0,45				
ГИК-ТС(в)	Н	180	Слюдобумага, стеклоткань	Кремнийорганиче- ское	0,25-0,45				
ГСП-ТПл	F	155	Слюдобумага, стекло- ткань, пленка ПЭТ (поли- этилентерефталатная)	Полиэфирноэпок- сидное	0,05-0,5				
ГИП-ЛСП-Пл(в)	F	155	Слюдобумага, стекло- ткань, пленка ПЭТ	Полиэфирноэпок- сидное	0,35-0,5				
ГИП-Т-СПл(в)	F	155	Слюдобумага, стекло- ткань, пленка ПЭТ	Полиэфирноэпок- сидное	0,25-0,4				

Примечание: (в) — влагостойкий.

Стеклослюдоленты, стекломикаленты

Стеклослюдоленты — это ленты, представляющие собой композицию слюдяной бумаги, стеклоткани, полимерной пленки и пропитанные кремнеорганическим или иным связующим. Применяются в качестве корпусной и витковой изоляции обмоток высоковольтных и низковольтных электрических машин и тяговых двигателей.

Таблица 4.15. Технические характеристики некоторых стеклослюдолент

Марка ленты	Класс нагре- востойкости	Температурный индекс, °C	Композиционный состав	Связующее	Толщина, мм
ЛСК-110ТПл (СПл)	В	130	Стеклоткань, слюдобума- га, пленка ПЭТ	Эпоксиднополиэф. компаунд	0,08-0,17
ЛСЭП-934ТПл	F	155	Стеклоткань, слюдобума- га, пленка ПЭТ	Эпоксиднополи- эфирный лак	0,08-0,17
ЛСБП-М	F	155	Слюдобумага, пленка ПЭТ	-	. –
лсьп-т-м	F	155	Стеклоткань, слюдобума- га, пленка ПЭТ	-	-

Стекломикаленты — ленты, изготовленные на основе натуральной слюды, стеклотканей, пропитанных масляно-глифталевым или кремнийорганическим связующим. Применяются в качестве корпусной и витковой изоляции обмоток высоковольтных и низковольтных электрических машин и тяговых двигателей.

Таблица 4.16. Технические характеристики стекломикалент

Марка материала	Класс нагрево- стойкости	Температурный индекс, °C	Композиционный состав	Связующее	Толщина, мм
ЛФК-ТТ	H ·	180	Слюда флого- пит, стеклоткань	Кремнийоргани- ческое	0,10-0,17
лмк-тт	Н	180	Слюда мусковит, стеклоткань	Кремнийоргани- ческое	0,10-0,17

4.3.3. Материалы пропитанные

Стеклоткань пропитанная

Стеклоткань пропитанная марки ПС-ИФ/ЭП (ТУ 16-503.036-75) представляет собой материал, полученный путем пропитки стеклоткани фенолформальдегидным (эпоксиднофенолформальдегидным) лаком общего назначения. Применяется для изготовления из нее деталей методом горячего прессования. Стеклоткань выпускается в рулонах с номинальной шириной (690; 790; 890; 940; 1070) ±20 мм.

Таблица 4.17. Технические характеристики стеклоткани

Наименование	Смола, %	Летучие вещества, %, не более	Растворимая смола, %, не менее
пс-иф/эп	40-55	3,0	90

Лакоткани

Лакоткань электроизоляционная марки ЛСМ(б)-105/120-ТУ 16-95 И05.0003.006 ТУ применяется в качестве электроизоляционного материала для длительной работы при температуре до 120±5 °C.

Таблица 4.18. Технические характеристики лакоткани ЛСМ(б)-105/120

Марка приотирии	Howard use Tomores	Пределы	ное отклонение
Марка лакоткани	Номинальная толщина	среднее	в отдельных точках
ЛСМ(б)-105/120	0,12	0,02	0,03
	0,15	0,02	0,03
	0,17	0,02	0,03
	0,20	0,02	0,03

Таблица 4.19. Электромеханические характеристики лакоткани ЛСМ(б)-105/120

	Наименование показателя		Норм		юмина ин, мм	льных
			0,12	0,15	0,17	0,20
Пробивное напряжение	при температуре 15-35 °C и относи-	среднее	4,9	5,4	6,0	6,7
лакоткани на электродах диаметром 6 мм, кВ, не	тельной влажности воздуха 45-75 %	в отдельных точка х	2,9	3,2	3,5	3,9
менее	при температуре 15-35 °C и относительной влажности воздуха 45-75 % после перегиба при температуре 120 ±2 °C	среднее	3,0	3,6	4,2	4,4
		в отдельных точках	2,3	2,6	2,8	2,9
		среднее	3,1	3,6	4,1	4,6
		в отдельных точках	2,2	2,6	3,0	3,2
 	после пребывания в атмосфере с от-	среднее	1,9	2,4	3.0	3,4
	носительной влажностью 93 ±2 % при температуре 23 ±2 °C в течение 96 ч	в отдельных точках	1,0	1,5	2,0	2,6
	при температуре 15-35 °C и относи- тельной влажности воздуха 45-75 % в состоянии растяжения	среднее	8.0	10,5	13,0	15,0

Наименование показателя		Норма для номинальных толщин, мм			
		0,12	толщин 0,15 10,5 8,5	0,17	0,20
Удельная разрушающая нагрузка при растяжении, кН/м, не менее, при температуре 15—35°С и относительной влажности возраха 45—75%	средняя	8,0	10,5	13,0	15,0
	минимальная	7,0	8,5	9,5	10,0
Нагрузка для получения нормированного относительного удлинения, равного 6 %, Н	допускаемые пределы средних значений на- грузок	4-15	5-20	20 5–25	6-30
	максимальное значе- ние нагрузки	20	25	30	35

Лакоткань электроизоляционная марки ЛСК(€)-155/180-ТУ 16-96 ИО5.0003.005 ТУ применяется в качестве электроизоляционного материала для длительной ра€оты при температуре до 180 °C.

Таблица 4.20. Технические характеристики лакоткани ЛСК(б)-155/180

Manua nava-vauv	Have an an an annual and	Пределы	ное отклонение
Марка лакоткани	Номинальная толщина, мм	среднее	в отдельных точках
ЛКС(б)-155/180	0,10	±0,02	±0,02
	0,12	±0,02	±0,03
	0,15	±0,02	±0,03

Таблица 4.21. Технические характеристики лакоткани ЛСК(б)-155/180

	Наименование показателя		Норма дл нальных то	
			лальных то 0,10	0,15
Пробивное напряже-	при температуре 15-35 °C и относи-	среднее	5,5	8,0
ние лакоткани на элек- тродах диаметром	тельной влажности воздуха 45—75 %	в отдельных точках	4,0	5,0
6 мм, кВ, не менее	при температуре 15-35 °C и относи-	среднее	1,2	4,0
	тельной влажности воздуха 45—75 % после перегиба	в отдельных точках	i · -	2,€
	при температуре 180 ±25 °C	среднее	3,0	4,5
		в отдельных точках	1,5	3,0
	после пребывания в атмосфере с отно-	среднее	3,3	4,8
	сительной влажностью 93 ±2 % при температуре 23 ±2 °C в течение 96 ч	в отдельных точках	0,9	3,0
	при температуре 15—35 °C и относительной влажности воздуха 45—75 % в состоянии растяжения	среднее	3,3	4,5

Наименование показателя			
		Норма для нальных тол 0,10 8,0 7,0 4–30 35	0,15
Удельная разрушающая нагрузка при растяжении, кН/м, при	средняя	8,0	13,0
температуре 15—35 °C и относительной влажности воздуха 45—75 %, не менее	минимальная	7,0	9,5
Нагрузка для получения нормированного относительного удли- нения, равного 6 %, Н	допускаемые пределы средних значений нагрузок	4-30	5–35
	максимальное значение нагрузки	35	40

нения, равного 6 %, Н	средних значений нагрузок	4-30 3-	3 00
	максимальное значение нагрузки	35	40
Таблица 4.22. Основные типы вы	пускаемых лакотканей		
Лакоткань капронова ЛКМ-105, т. 0,10-0,15			
Лакоткань капроновая ЛКМС-105, т. 0,10-0,15			
Лакоткань на шелке ЛШМС-105 т. 0,06-0,15			
Лакоткань на шелке ЛШМ-105 т. 0,08-0,15			
Стеклолакоткань ЛСКК-155/180 т. 0,12-0,17			
Стеклолакоткань ЛСКК-155/180 т. 0,20			
Стеклолакоткань ЛСК-155/180 т. 0,12-0,17			
Стеклолакоткань ПС-ИФ/ЭП			
Стеклолакоткань ПС-ИФ/ЭП (Э1-180ПМ-19× 1070)			
Стелолакоткань ПС-ИФ/ЭП (Э1/1-100-18× 950)			
Стеклолакоткань ПСС-ИФ/ЭП			
Стеклолакоткань ТВФЭ-2			
Стеклолакоткань ЛСМК-105/120 т. 0,13-0,15			
Стеклолакоткань ЛСМК-105/120 т. 0,17-0,20			
Стеклолакоткань ЛСМ-105/120 т. 0,15-0,20			
Стеклолакоткань ЛСММ-105/120 т. 0,17-0,20			
Стеклолакоткань ЛСПК-130/155 т. 0,12			
Стеклолакоткань ЛСПК-130/155 т. 0,15-0,17			
Стеклолакоткань ЛСП-130/155 т. 0,12			
Стеклолакоткань ЛСП-130/155 т. 0,15-0,17			
Стеклолакоткань ЛСКЛ-155 т. 0,12; 0,12 (34-80 ×900)			
Стеклолакоткань ЛСКЛ-155 т. 0,15 (33-125); 0,15 (33-100)		r	

4.3.4. Текстолиты и гетинаксы

Таблица 4.23. Текстолиты

Марка	ГОСТ, ТУ	Состав	Температур- ный ин- декс, °C	Назначение	Габариты				
Текстолит А	ГОСТ 2910-74 ТУ 05758799- 014-96 (для толщины свы- ше 50,0 мм)	Хлопчатобумажная ткань, фенолофор- мальдегидная смола	105	Для работы в трансформаторном масле и на воздухе в условиях нормальной относительной влажности 45—75 % при температуре 15—35 °C и частоте тока 50 Гц	(450-980)× × (600-1480) мм; толщиной				
Конструкцион- ный текстолит ПТК	ГОСТ 5-78	Хлопчатобумажная ткань, фенолофор- мальдегидная смола	105	Для изготовления шестерен червячных колес, втулок, подшипников скольжения колец					
Поделочный текстолит ПТ	FOCT 5-78	Хлопчатобумажная ткань, фенолофор- мальдегидная смола	105*	Для изготовления тех же деталей, для которых предназначена марка ПТК, но работающих при более низких нагрузках	(450-950)× × (600-1480) мм				

Таблица 4.24. Основные технические характеристики текстолитов

Наименование показателей	Единица изме- рения	Текстолит А	Текстолит ПТК	Текстолит ПТ
Разрушающее напряжение при изгибе перпендикулярно слоям, не менее	мПа	80	152	142
Разрушающее напряжение при растяжении, не менее	МПа	35	_	_
Разрушающее напряжение при сжатии, не менее, параллельно слоям	МПа	-	160	155
Ударная вязкость, по Шарли, на образ- цах без надреза, не менее	кДж/м ²	с надрезом 6,8	36	36
Водопоглощение, не более для листов толщиной 3,5 мм	МГ	166		-
Водопоглощение, не более	%	-	0,7	0,7
Пробивное напряжение параллельно слоям (одноминутное проверочное испытание) в условиях (90 °C) трансформаторного масла, не менее	кВ	12,0	_	-

щина 0,4-1,0 мм

Таблица 4.25. Стеклотекстолиты									
Марка	гост, ту	Состав	Темпера- турный индекс, °С	Назначение	Габариты				
стэф-у	Ty16-89µ79.0066 002Ty	Стеклоткань, эпоксидофеноль- ное связующее	155*	Для работы на воздухе в условиях нормальной относительной влажности 45—75 % при 15—35 °С и напряжении 1000 В, частоте тока 50 Гц и повышенной влажности 93 ±2 % при температуре 40 ±2 °С при напряжении до 1000 В и частоте тока 50 Гц	Листы размером 540—980× × 600—1480 мм; тол- щина 0,35—50 мм и листы размером 700—1000× × 1500 мм; толщина 60,0—100 мм				
Ст-ЭтФ	FOCT 12652-74	Стеклоткань, эпоксидофеноль- ное связующее	180*	Для работы на воздухе в условиях нормальной относительной влажности 45—75 % при 15—35 °С и напряжении 1000 В, частоте тока 50 Гц и повышенной влажности 93 ±2 % при температуре 40 ±2 °С при напряжении до 1000 В и частоте тока 50 Гц. Повышенная теплостойкость	Листы размером 540-980× × 600-1480 мм; тол- щина 0,35-50 мм				
СТЭФ-НТ	FOCT 12652-74	Материал нетканый из стекловолокна, эпоксидофенольное связующее	155*	Для работы на воздухе в условиях нормальной относительной влажности 45—75 % при 15—35 °С и напряжении 1000 В, частоте тока 50 Гц и повышенной влажности 93 ±2 % при температуре 40 ±2 °С при напряжении до 1000 В и частоте тока 50 Гц	Листы размером 540-980× × 600-1480 мм; тол- щина 2,0-50 мм				
СТЭБ	FOCT 12652-74	Стеклоткань, эпоксидоброми- рованное свя- зующее	140-	Для работы на воздухе в условиях нормальной относительной влажности 45—75 %, при 15—35 °C и напряжении 1000 В, частоте тока 50 Гц и повышенной влажности 93 ±2 % при температуре 40 ±2 °C при напряжении до 1000 В и частоте тока 50 Гц. Пониженная горючесть	Листы размером 540—980× × 600—1480 мм; тол- щина 1,5—50 мм				
СТЭБ-ОП	ТУ 16-503.275-86	Стеклоткань, зпоксидоброми- рованное свя- зующее	140°	СТЭБ-ОП-Р — для лакосажевых резисторов СТЭБ-ОП- П — для прокладок и плат. Пониженная горючесть	Листы размером 540-980× × 600-1480 мм; тол- щина 0,35-1,5 мм				
СтЭФ-П	ТУ 16-503.168-78	Стеклоткань, по- лупроводящее зпоксидофеноль- ное связующее	155°	Для уплотнения статорных об- моток гидрогенераторов	Листы размером 540-980× × 600-1480 мм; тол- щина 0,2-5,0 мм				
СТЭФ-ПВ	Ty 16-503.168-78	Стеклоткань, полупроводящее эпоксидофенольное связующее	155°	Для уплотнения обмоток в па- зах статоров высоковольтных электрических машин	Листы размером 540-980× × 600-1480 мм; тол-				

ное связующее

Таблица 4.26. Основные технические характеристики стеклотекстолитов

Наименование показателей		Единица измере- ния	CT-9TФ	СТЭФ-У	стэф-нТ	CT 36	СТЭБ-ОП	СТЭФ-П
Разрушающее напряжение при изгибе перпенди- кулярно слоям, не менее		мПа	350	220	320	350	350	225
Разрушающее напряжение при растяжении, не менее		МПа	220	50	220	220	-	_
Ударная вязкость по Шарли параллельно слоям на образцах с надрезом, не менее		кДж/м ²	50	35	30	50	_	_
Пробивное напряжение параллельно слоям (од- номинутное проверочное испытание) в условиях (90°C) в трансформаторном масле, не менее		кВ/мм	35	_	28	35	-	-
Электрическая прочность перпендику-	1,5	кВ/мм	11,5	-	_	_	13,1	_
лярно слоям (одноминутное проверочное испытание), не менее, для толщины, мм	3,0		10,4	10,2	8,0	11,5	_	_
Тангенс угла диэлектрических потерь при частоте 1-10 ⁶ Гц после кондиционирования, не более		. –	0,04	-	0,04	0,04	0,04	-
Горючесть (время горения), не более		С	_	_	_	5	10	-
Водопоглощение, не более, для тол-	1,5	мг	23	_	_	-	19	-
щины, мм	3,0		23		23	23	-	_

Таблица 4.27. Стеклопластики профильные

Марка	гост, ту	Состав	Температурный индекс, °С	Назначение	Габариты
спп-эи	TY 16.503.210-81	Стеклоровинг, эпоксидное связующее	155	Применяется в подвесных линейных изоляторах, межфазовых изолирующих распорках, изолирующих траверсах в электрических машинах и аппаратах	Изготавливается в виде стержней длиной от 750 до 4000 мм с предельными отклонениями ±10 мм. Площадь поперечного сечения от 0,5 до 28,26 см²
СПП-БИД	TY 16-503.170-78	Стеклоровинг, полизфиримид	155	В качестве пазовых клиньев в электрических машинах	Изготавливается в виде прутков поперечного сечения прямоугольной, трапецеидальной, круглой, полукруглой, сегментной формы, длиной не менее 1500 мм. Размеры сечения: высота 2,0—6,0 мм; ширина 4,2—16,0 мм

Таблица 4.28. Основные технические характеристики профильных пластиков

			СПІ	п-эи	спп-вид
Наимено	Единица измерения	сечен	ие, см ²	сечение, мм:	
		·		4,1-28,26	h = (2,0-6,0) $b = (4,2-16,0)$
Разрушающее напряж	ение при растяжении, не менее	МПа	800	800 700 580	
Разрушающее напряж не менее	ение при статическом изгибе,	мПа	_		
Модуль упругости при	растяжении не менее	мПа	0,3.105	0,3.105	_
Ударная вязкость,	поперек волокон	кДж/м ²	_	_	250
не менее	перпендикулярно волокнам		265	265	-
Водопоглощение, не более		%	0,05	0,05	0,7
Удельное поверхностн ние, не менее	ое электрическое сопротивле-	Ом	1.1012	1.1012	1.1012

Таблица 4.29. Гетинаксы

Марка	ГОСТ, ТУ	Состав	Темпе- ратур- ный ин- декс, °С	Назначение	Габариты
Лавсановый гетинакс ЛГ	ТУЧ 6-503-224-82	Лавсановая бумага, эпоксидофенольное связующее	155	Для работы на воздухе в условиях нормальной отно- сительной влажности при 45-75 % и температуре 15-35 °C, а также в условиях повышенной влажности 93 ±2 % и температуре 40 ±2 °C без дополнительного влагозащищенного лакового покрытия	Листы размером 450-950× × 700-1480 мм; толщина 0,5-50 мм
Гетинакс I .	ΓΟCT 2718-74	Электроизоляционная пропиточная бумага, фенолоформальдегидное связующее	120	Для работы на воздухе в условиях нормальной отно- сительной влажности при 45 —75 % и температуре 15—35 °С и в трансформаторном масле при напряжении до 1000 В и частоте тока 50 Гц	Листы размером 450-980× × 700-2480 мм; толщина 0,2-50 мм
Гетинакс V	ΓΟCT 2718-74	Электроизоляционная пропиточная бумага, эпоксидофенольное связующее	120	Для работы на воздухе в условиях нормальной отно- сительной влажности при 45 –75 % и температуре 15—35 °С и в трансформаторном масле при напряжении свыше 1000 В и частоте тока 50 Гц	Листы размером 450-980× × 700-2480 мм; толщина 1,0-50 мм

Таблица 4.30. Основные технические характеристики гетинаксов

Наименование показателей	Единица измерения	лг	ı	٧
Разрушающее напряжение при изгибе перпендикулярно слоям, не менее	МПа	80	105	105
Разрушающее напряжение при растяжении, не менее	МПа	60	80	70
Пробивное напряжение параллельно слоям (одноминутное проверочное испытание), не менее	· кВ	30	12	32
Электрическая прочность перпендикулярно слоям (одноминутное проверочное испытание), не менее — для толщины 3,0 мм	кВ/мм	11,5	3,7	10,2
Тангенс угла диэлектрических потерь при частоте 50 Гц после кондицио- нирования, не более	-	0,04	-	0,05
Водопоглощение для толщины 3,5 мм, не более	МГ	50	575	280

4.3.5. Стеклоленты, ленты бандажные и утягивающие

Ленты стеклянные — это ленты, изготовленные из стеклонитей. Применяются в качестве бандажирующего и утягивающего слоя в системе изоляции низковольтных и высоковольтных электрических машинах. Выпускаемые марки стеклолент: ЛЭСБ 0.1×20 ; 0.1×25 ; 0.2×20 ; 0.2×35 .

Ленты бандажные — ленты, изготовленные из стеклянных нитей и пропитанные эпоксидным связующим. Используются для бандажирования якорей роторов электродвигателей. Выпускаемые марки бандажных лент: ЛСБЭ-155; ЛСБЭ-180; ЛСБ-155 (связующее — лак ПЭ-9180); СПЛ-155.

Ленты утягивающие (хлопчатобумажные) — ленты, изготовленные из хлопчатобумажной пряжи разного вида переплета. Применяются в качестве утягивающего слоя основной изоляции обмоток высоковольтных и низковольтных электрических машин. Выпускаемые марки: лента киперная шириной 25 и 30 мм, лента тафтяная шириной 25 и 30 мм.

Ленты утягивающие (самоусаживающиеся) — ленты на основе различных полимерных материалов, имеющие свойства самоусаживания. Применяются в качестве утягивающего слоя основной витковой и корпусной изоляции обмоток высоковольтных и низковольтных электрических машин. Марки: лента ЛЭТСАР КФ- 0,5 (лента на основе синтетического каучука, имеющая великолепные самослипающиеся и самоусаживающиеся свойства), лента лавсановая самоусаживающаяся (плетенная лента на основе лавсановых нитей).

Лента стеклобандажная марок ЛСБЭ-155, ЛСБ-155 ТУ 6-48-00204961-22-94

Лента стеклобандажная предназначена для бандажирования якорей и роторов электрических машин класса изоляции F.

Таблица 4.31. Основные технические характеристики лент стеклобандажных

Наименование показателей	ЛСБЭ-155	ЛСБ-155	
Ширина ленты, мм	20+2-3		
Толщина ленты, мм	0,2 ^{+0,05} -0,03		
Массовая доля связующего, %	24 ±2,0	22 ±2,0	
Массовая доля летучих веществ, %	0,7~2,0	0,7-2.0	
Разрушающее напряжение при растяжении, МПа, (кгс/мм²), не менее	720 (72)		

Ленты электроизоляционные из стеклянных крученых комплексных нитей ГОСТ 5937-81

Ленты предназначены для изоляции обмоток электрических машин, аппаратов и проводов.

Таблица 4.32. Осноеные технические характеристики крученых комплексных нитей

Марка ленты	' IODUNHA MM		Число нитей осно- вы в ленте, шт.	Плотность по утку, нитей/см ²	Разрывная нагрузка по основе, Н (кгс), не менее	Линейная плотность
лЭСБ 0,10 ±0,02		10 ±1	30 ±2	15 ±1	294	100
,		20 ±1	54 ±2	15 ±1	441	230
	i 1	25 ±1	66 ±2	15 ±1	589 (60)	290
	j	30 ±1	78 ±2	15 ± 1	785 (80)	350
		40 ±2	105 ±2	15 ±1	981 (100)	465
лэсь	0,15 ±0,03	20 ±1	48 ±2	13 ±1	687 (70)	330
		25 ±1	60 ±2	13 ±1	883 (90)	410
	İ	35 ±2	84 ±2	13 ±1	1079 (110)	575
лэсь	0,20 ±0,025	15 ±1	30 ±2	12 ±1	687 (70)	330
		20 ±1	40 ±2	12 ±1	883 (90)	440
		25 ±1	50 ±2	12 ±1	1079 (110)	550
		30 ±2	60 ±2	12 ±1	1275 (130)	660
		35 ±2	70 ±2	12 ±1	1472 (150)	770
		40 ±2	80 ±2	12 ±1	1668 (170)	880
		45 ±2	88 ±2	12 ±1	1864 (190)	980
		50 ±2	96 ±2	12 ± 1	2060 (210)	1090

4.4. Материалы для пропитки обмоток

4.4.1. Электроизоляционные лаки

Электроизоляционные лаки представляют собой растворы глифталевых или пентафталевых смол, модифицированных натуральными растительными маслами, жирными кислотами растительных масел, дистиллированным талловым маслом в органических растворителях.

Лак ГФ-95 (ГОСТ 8018-70) — электроизоляционный пропиточный лак с добавкой меламиноформальдегидной смолы, предназначается для пропитки обмоток электрических машин, аппаратов и трансформаторов с изоляцией класса нагревостойкости В.

Лак ГФ-985 (ТУ 16-504.012-77) — электроизоляционный пропиточный лак, применяется в электрокабельной промышленности при изготовлении обмоточных проводов.

Лак МЛ-92Н (ТУ 16-97И05.0235.001 ТУ) — раствор смеси глифталевого лака и карбамидоформальдегидной смолы в органических растворителях. Лак предназначается для пропитки обмоток электрических машин, аппаратов и трансформаторов.

Таблица 4.33. Основные технические характеристики электроизоляционных лаков

Наименование показателя Условная вязкость по ВЗ-246 при температуре 20 ±0,5°C		Единица изме- рения ГФ-95		ГФ-985	мл-92Н	
		С	30-50	40-60	25–50	
Массовая доля неле	тучих веществ	%	46-52	не менее 60	48-53	
Кислотное число, не более		мг КОН/г	12		10	
Время высыхания до степени 3, при 105-110°C, не более		час	2	При 210 °C — 20 мин При 280 °C — 8 мин	При 120 ±2 °C – 2 час	
Термоэластичность пленки при температуре 150 ±2 °С, не менее Твердость пленки по маятниковому прибору M-3 при температуре 20 ±1 °С, не менее		час	48	При 105 °C — 20 час	48	
		у сл. ед.	0,42	_	0,3	
Маслостойкость пле	енки, не менее	Н	59	-	78	
Электрическая	20 ±2	кВ/мм	70	40	70	
прочность пленки – при температу- ре °C, не менее	130 ±2		при 120°C – 45	_	40	
Электрическая прочность пленки после воздействия воды в течение 24 ч при температуре 20 ±2 °C			25	-	30	

Лак МЛ-92 (ГОСТ 15865-70) — электроизоляционный лак, представляет собой раствор глифталевого лака и меламиноформальдегидной смолы в органических растворителях. Предназначен для пропитки обмоток электрических машин, аппаратов и трансформаторов и покрытия электроизоляционных деталей. Класс нагревостойкости В.

Таблица 4.34. Основные технические характеристики лака МЛ-92

Наименование показателя	Единица измере- ния	мл-92	
Внешний вид пленки лака	-	глянцевая однородная гладкая, от светло- до темнокоричневого цвета	
Условная вязкость при 20 °C по ВЗ-246 (диаметр	С	25-50	
Массовая доля нелетучих веществ		%	50-55
Кислотное число, не более	мг КОН/г	10	
Время высыхания при 105-110 °C, не более	олее час 1		
Твердость пленки при 20 ±1 °C, не менее		усл. ед.	0,40
Способность просыхания в толстом слое при 115	5—120 °C, не более	час	16
Термоэластичность пленки при 150 °C, не менее		час	48
Маслостойкость пленки, не менее		Н	78
Электрическая прочность, не менее, при °C	20 ±21	кВ/мм	70
	130 ±2		40
Электрическая прочность при 20 ±2°C, после де ние 24 час, не менее	йствия воды в тече-		30

Таблица 4.35. Основные технические характеристики лакое ФЛ-98 и УР-231

Наимено- вание лака	FOCT TY	Область применения	Метод нанесе- ния	Разбавление	Режим сушки	
ФЛ-98	FOCT 12294-66	Пропитка обмоток электродви- гателей с изоляцией класса на- гревостойкости В	Окунание Ксилол		При 120 ±2 °C — 2 часа	
УР-231 УР-231Л	ТУ 6-21-14-90	Защита металлических изделий и печатных узлов, эксплуатируемых в интервале температур от минус 60 °C до плюс 120 °C	Налив, окуна- ние, пневмо- распыление, кисть	Смесь ксилола (4) и бутилаце- тата (1)	При 65 ±5 °C — 8 часов При 20 ±2 °C — 9 часов	

4.4.2. Лаки для пропитки обмоток электрических машин

Таблица 4.36. Характеристики лаков для пропитки обмоток электрических машин

Марка		Состав	}	Темпера-	
	ГОСТ, ТУ	Химическая основа	Растворители	турный ин- декс, °С	Назначение
мл-92	FOCT 15865-70	Модифицированный глифталь	Уайт-спирит, ксилол	130	Для пропитки обмоток
ПЭ-9180	ТУ16-93И37.0214.012ТУ	Полиэфирэпоксид	Толуол, этил- целлозола	155	электрических машин
ПЭ-9153 ПЭ-9153 м	ТУ 16-504.055-84	Модифицированный олигоимдалкид	Ксилол, уайт- спирит	155	

Марка		Состав	3	Темпера-	
	гост, ту	Химическая основа	Растворители	турный ин- декс, °С	Назначение
ПЭ-993	ТУ ИЗ7.0214.02-92	Полиуретан	Ксилол, цик- логексанон	155	Для пропитки обмоток
УР-9144	ТУ 16-504.047-81	Модифицированный полиуретан	Ксилол, цик- логексанон	155	электрических машин
иД-9152	ТУ 16-504.061-86	Полиэфирцианура- тимид	Циклогекса- нон толуол	180	

Таблица 4.37. Основные технические характеристики лаков для пропитки обмоток электрических машин

Наименование показа	телей	Единица измере- ния	мл-92	ПЭ-9180	ПЭ-9153	ПЭ-9153М	ПЭ-993	УР-9144	ид-9152
Массовая доля нелетучих	веществ	%	50-55 (2r/1ч/ 120°C)	50-55 (2r/3ч/ 130°C)	55-60 (2r/14/ 150°C)	55-60 (2r/1ч/ 150°C)	48-52 (2r/24/ 130°C)	48-52 (2r/2ч/ 130°C)	43-47 (2r/14/ 180°C)
Вязкость по вискозиметр (диаметр сопла 4 мм) при 20 ±0,5 °C	y B3-246	C	25-50	30-60	30-50	40-90	40-110	30-90	40-80
Время высыхания лако-	105-110	мин	60	_	_	_		_	_
вой пленки до степени 3 при °C, не более	130		_	_	30	40	30	30	30
	160		_	30	_	_	_	_	-
Время просыхания в	120	час	16	_	10	-	_	_	_
толстом слое, не более	130		_	_		.6	5	5	-
	155		-	16	-	-	-	-	_
Время просыхания в закр объеме при 150 °C, не бо		час	_	-	_	_	_	 	8
Электрическая проч- ность, при °С, не менее	15-35	кВ/мм	65	80	70	80	80	80	80
ность, при С, не менее	130		40	-	60	60	60	60	! –
	155		-	40	-	45	40	40	-
	180		-	-	_	_	-	-	60
Цементирующая спо-	15-35	н	_	300	_	-	330	330	330
собность при °С, не менее	155		-	100	_	_	-	-	_
	180	,	-	_	_	-	<u> </u>	-	50

4.4.3. Электроизоляционные эмали

Эмали электроизоляционные предназначены для покрытия и отделки обмоток электрических машин и аппаратов с длительной рабочей температурой до 130 °C. Эмаль электроизоляционная марок: ГФ-92ХК, ГФ-921К, ГФ-92ХС, ГФ-92ГС — (ТУ 16-95 И05.0211.008 ТУ).

Примечание: (K) — красно-коричневая, (C) — серая, (X) — холодного отверждения, (Γ) — горячего отверждения.

Таблица 4,38. Основные технические характеристики электроизоляционных эмалей

Наим	енование показателя	Единица измерения	ГФ-92ХК	ГФ-92ГК	ГФ-92ХС	ГФ-92ГС
Условная вязкост 20 ±0,5 °C	ъ по ВЗ-246 при температуре	С	20-60	20–60	20-60	20-60
Массовая доля н	елетучих веществ	%	49-57	49-57	49–57	49–57
Укрывистость высушенной пленки, не более		г/м²	80	80	125	125
Время высыха- ния пленки	до степени 3 при температу- ре, 20 ±2 °С не более	час	24	_:	24	<u> </u> -
	до степени 4 при температу- ре, 20 ±2°C не более		120	-	120	-
	до степени 4 при температу- ре, 105 ±10 °C не более		_	3	-	3
Степень перетир	а, не более	МКМ	25	25	20	20
Твердость покры М-3, не менее	тия по маятниковому прибору	усл. ед.	0,45	0,45	0,45	0,45
Термоэластичнос 150 ±2 °С. не ме	сть пленки при температуре	час	5	5	10	10

4.4.4. Компаунды для пропитки и заливки

Таблица 4.39. Характеристика компаундов

Марка	гост, ту	Состав	Температур- ный индекс, °С	Назначение
КП-34	TY16-504.014-77	Смесь полимери- заионных олиго- меров	155	Для пропитки обмоток электрических машин, в т. ч. для капельной и струйной пропиток. Поставка в комплекте: инициатор — паста перекиси бензоила, 3 % к массе компаунда; ускоритель ЖК-1 или ЖКСМ, 2 % к массе компаунда
КП-103	TY16-504.011-76	Термореактивный эпоксиднометак- риловый состав	155	Для пропитки обмоток электрических машин и аппаратов влагостойкого исполнения. Поставка в комплекте: инициатор — паста перекиси бензоила, 3 % к массе компаунда; ускоритель ЖК-1 или ЖКСМ, 2 % к массе компаунда
ЭКС	-	Композиция эпок- сиднодиановых смол и наполни- телей	-	Для пропитки и заливки высоковольтных элементов электро- и радиоаппаратуры. Диапазон рабочих температур (60-100 °C). Поставляется в комплекте с отвердителем

Таблица 4.40. Основные технические характеристики компаундое

Наименование показателе	ей	Единица измерения	КП-34	KП-103	ЭКС
Вязкость по вискозиметру ВЗ-246 (ди 4 мм) при 20 ±0,5 °C	С	50-110	-	-	
Вязкость по вискозиметру ВЗ-1 (диаг 5,4 мм) при 20 ±0,5 °C	метр сопла	C	_	50-105	-
Вязкость по вискозиметру ВЗ-246 (ды 6 мм) при 50 ±2 °С не более	иаметр сопла	мин	_	-	3,5
Время просыхания в толстом слое,	. 125 ±2	мин	30	- [-
не более, при °C	155 ±2			15	-
Время высыхания в тонком слое до	125 ±2	мин	30	-	~
степени 3, не более, при °С	155 ±2		час	-	15
Цементирующая способность, не	20 ±0,5	Н	294	294	-
менее, при *С	155		245	-	-
Электрическая прочность, не менее при 20 ±0,5 °C		кВ/мм	22	18,5	25
Диэлектрическая проницаемость на ч 10 ⁶ Гц, не более при 20 ±0,5 °C	астоте	_	_	-	4
Воспламеняемость (время горения),	С	_	-	5	

4.4.5. Составы без растворителей для пропитки обмоток электрических машин

Таблица 4.41. Характеристика пропиточных составов

		-раннорает			
		Соста	ВВ	T	
Марка	гост, ту	Химическая основа	Разбави- тель	Температурный индекс, °С	Назначение
₋ Бид-9127	TY16-504.038-77	Ненасыщен- ный олиго- эфиримид	Стирол	155	Для струйной пропитки об- моток электрических машин и в качестве связующего для профильных стеклопла- стиков. Поставка в комплекте: от- вердитель — третбутилпер- бензоат, 1 % к массе лака
БиД-9001	ТУ16-90И79.0266.001ТУ :	Ненасыщен- ный олиго- эфиризоциа- нуратимид	Диаллил- фталат	200	Для пропитки обмоток электрических машин методом погружения или вакуумнагнетательным. Отвердитель — 50-процентный раствор перекиси дикумила в дибутилфталате, 2 %

к массе лака

		Сост	ав	T	
Марка	гост, ту	Химическая основа	Разбави- тель	Температурный индекс, °С	Назначение
Бид-9003	ТУ16-90И79.0266.001ТУ	Ненасыщен- ный олиго- эфиримид	Диаллил- фталат	180	Для пропитки обмоток электр. машин методом по- гружения или вакуумнагне- тательным. Отвердитель: 50-процентный раствор пе- рекиси дикумила в дибутил- фталате — 2 % к массе лака
БИД-9002 А	ТУ16-92И79.0266. 002ТУ	Ненасыщен- ный олиго- эфиримид	Олиго- эфиракри- лат	155	Для пропитки обмоток электрических машин методом погружения. Отвердитель — 2 % к массе лака
БИД-9002Б					Для пропитки капельным методом. Отвердитель — 2 % к массе лака

 Таблица 4.42. Осноеные технические характеристики пропиточных составое

 Единица из Бил. ок

Наименование показа	телей	мерения		БИД		БИД-	9002
		С	9001	9003	9127	Α	Б
Вязкость по вискозиметру (диаметр сопла 4 мм) при (2010,5)° С		С	Не более 60 (при 70°C)	Не более 60 (при 7 0°C)	30-120	60-180	60-190
Продолжительность же-	120	мин	_	_	4		
латинизации, не более, при °C	130		-	-		10	5
	150		30	20			
Цементирующая способ-	15-35	Н	280	250	250	250	250
ность, не менее, при °С	155	1	_	_	_	100	100
	180		100	120	_	-	-
Электрическая прочность, нее. при (15-35) °C	не ме-	кВ/мм	25	25	25	20	20

5. Пересчет обмоточных данных при ремонте и перемотке асинхронных электродвигателей

5.1. Пересчет обмотки на другое напряжение

При пересчете обмоток на другое напряжение число эффективных проводников в пазу изменяется прямо пропорционально напряжению. Так, например, при увеличении напряжения в два раза число эффективных проводников увеличивается тоже в два раза, а при уменьшении напряжения в два раза — уменьшается в два раза. При пересчете используются фазные значения напряжений.

В случае изменения при перемотке числа параллельных ветвей обмотки полученное число эффективных проводников умножают на отношение нового числа параллельных ветвей к старому числу параллельных ветвей. Так, например, если старая обмотка имела три параллельные ветви, а новая будет выполнена с двумя, то множитель будет равен $^2/_3$, если старая имела две ветви, а новая выполняется с тремя, то множитель $^3/_2$.

При всех пересчетах надо помнить, что число эффективных проводников в пазу возрастает как при увеличении фазного напряжения, так и при увеличении числа параллельных ветвей и уменьшается при уменьшении напряжения и числа ветвей.

Пересчет при стандартных фазных напряжениях 127, 220, 289, 380, 500 и 660 В удобно производить по номограмме (рис. 5.1). Число проводников в соответствии с рис. 5.1 определяется следующим образом. На горизонтальной линии, против которой обозначено старое напряжение, находим старое число проводников и от найденной точки проводим вертикальную линию до пересечения с горизонтальной, против которой обозначено новое напряжение. Точка пересече-

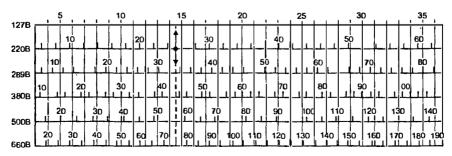


Рис. 5.1. Определение числа эффективных проводников в пазу при перемотке на другое напряжение

ния дает новое число проводников. Например, при фазном напряжении 220 В число проводников в пазу равно 25.

В качестве примера определим, сколько должно быть проводников при фазных напряжениях 127, 289, 380, 500 и 660 В.

На горизонтали $220~\mathrm{B}$ находим точку 25, проводим от нее вверх и вниз вертикальную линию и находим число проводников в пазу при других напряжениях: 14,5 — при $127~\mathrm{B};~33$ — при $289~\mathrm{B};~43$ — при $380~\mathrm{B};~57$ — при $500~\mathrm{B};~и~75$ — при $660~\mathrm{B}$.

Когда число проводников в пазу большое (не менее 20), полученный при пересчете результат можно округлить до целого числа, так как при этом погрешность будет невелика (не превысит 2,5 %). При меньшем числе дробный результат можно превратить в целое число путем увеличения числа параллельных ветвей. В двухслойной обмотке при нечетном числе проводников в пазу необходимо изготовить разновитковые катушки. В однослойной обмотке число проводников может быть и дробным (с 1/2), при этом также будут необходимы разновитковые катушки.

Число эффективных проводников в пазу статора изменяется прямо пропорционально напряжению, а сечение провода — обратно пропорционально.

Новый диаметр провода по меди при сохранении числа параллельных ветвей и числа параллельных проводников находят как произведение старого диаметра на корень квадратный из отношения старого напряжения к новому. С целью удобства пересчета диаметра провода на рис. 5.2 приведена номограмма, построенная по тому же принципу, что и на рис. 5.1.

При изменении числа параллельных ветвей или числа параллельных проводников, или того и другого вместе — полученный по рис. 5.2 диаметр умножают на коэффициент, равный корню квадратному из отношения произведений старых чисел к новым. Значения коэффициента приведены в табл. 5.1. Например, по рис. 5.2 найден диаметр провода по меди 2,16 мм.

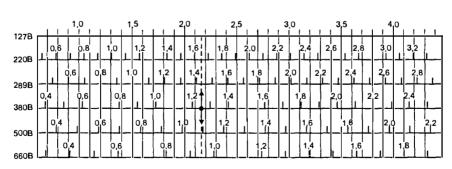


Рис. 5.2. Определение диаметра провода при перемотке на другое напряжение

В старой обмотке было две параллельные ветви и два параллельных проводника, для новой обмотки выбрано пять параллельных ветвей и два параллельных проводника. Находим произведения: для старой обмотки $2 \times 2 = 4$ и для новой $5 \times 2 = 10$. На пересечении графы 4 и стоки 10 находим коэффициент 0,63. Новый диаметр будет равен $2,16 \times 0,63 = 1,36$ мм.

Таблица 5.1. Коэффициент для нахождения провода при изменении числа параллельных ветвей и числа параллельных проводников

				•	,			,						
Произведение нового чис- ла параллельных ветвей	Козф	фици	ент пр	и про	изведе		арого пельнь		•	лельных в	етвей	на ста	рое чі	исло
на новое число парал- лельных проводников	1	2	3	4	5	6	8	9	10	12	15	16	18	20
1	1	1,41	1,73	2,0	2,24	2,45	2,83	3,00	-	-	-	_	_	-
2	0,71	1	1,22	1,41	1,58	1,73	2,00	2,12	2,24	2,452,00	2,74	2,83	3,00	_
3	0,58	0,82	1	1,16	1,29	1,41	1,64	1,73	1,83	1,73	2,24	2,31	2,45	2,58
4	0,50	0,71	0,87	1	1,12	1,23	1,41	1,5	1,58	1,55	1,94	2,00	2,12	2,24
5	0,45	0,63	0,78	0,90	1	1,1	1,27	1,34	1,41	1,41	1,73	1,79	1,90	2,00
6	0,41	0,58	0,71	0,82	0,91	1	1,16	1,22	1,29	1,22	1,58	1,63	1,73	1,83
8	-	0,50	0,61	0,71	0,79	0,87	1	1,06	1,12	1,16	1,37	1,41	1,50	1,58
9	-	0,47	0,58	0,67	0,75	0,82	0,94	1	1,05	1,1	1,29	1,33	1,41	1,49
10	_	-	0,55	0,63	0,71	0,78	0,90	0,95	1	1,05	1,22	1,27	1,34	1,41
12	-	-	0,50	0,58	0,65	0,71	0,82	0,87	0,91	1	1,12	1,16	1,22	1,29
15	-	~	-	0,52	0,58	0,65	0,73	0,78	0,82	0,90	1	1,12	1,1	1,16
16	_	-	_	0,50	0,56	0,61	0,71	0,75	0,79	0,87	0,97	1	1,06	1,12
18	-	-	-	_	0,53	0,58	0,67	0,71	0,75	0,82	0,91	0,94	1	1,0
20	_	_	-	_	0,50	0,55	0,63	0,67	0,71	0,78	0,87	0,90	0,95	1

При изменении числа проводников и диаметра провода необходимо проверить размещение в пазу новой обмотки. Для этого должно быть соблюдено условие

$$\frac{n_{\text{HOB}}D_{\text{HOB}}^2}{n \cdot D^2} \le 1,$$

где: $n_{_{NOB}}=N_{_{NOB}}n_{_{_{3A,NOB}}}$ — полное число проводников в пазу после перемотки; $n_{_{cm}}=N_{_{cm}}n_{_{_{3A,NOB}}}$ — полное число проводников в пазу до переметки; $N_{_{NOB}}$ и $N_{_{cm}}$ — соответствующее число эффективных проводников после перемотки и до перемотки; $n_{_{_{3A,NOB}}}$ и $n_{_{_{3A,cm}}}$ — число элементарных проводников после перемотки и до перемотки; $D_{_{NOB}}$ и $D_{_{cm}}$ — диаметр провода по изоляции после перемотки и до перемотки, мм.

Во многих случаях небольшое увеличение коэффициента заполнения можно допустить. При большом увеличении коэффициента заполнения (более 4...5 %) надо произвести пробную укладку одной катушки и при тугом заполнении принять необходимые меры: уменьшить толщину пазовой изоляции, толщину клина, подобрать провод с меньшей толщиной изоляции. В крайнем случае приходится уменьшать диаметр провода по меди. Но при этом мощность электродвигателя после перемотки снижается

$$P_{\text{\tiny HOB}} = P_{cm} \frac{d'_{\text{\tiny HOB}}}{d_{\text{\tiny HOB}}},$$

где: P_{cm} — мощность до перемотки, кВт; d_{nos} — диаметр провода по меди, определенный при пересчете (до округления), мм; d'_{nos} — диаметр провода по меди, уменьшенный после проверки заполнения паза, мм.

Емкость конденсатора однофазного двигателя при пересчете напряжения определяется по формуле:

$$C_{\kappa o \theta} = C_{cm} \left(\frac{U_{cm}}{U_{\kappa o \theta}} \right)^2,$$

где: C_{cm} — емкость конденсатора до перемотки; C_{nos} — после перемотки, мк Φ .

5.2. Изменение напряжения питания электродвигателя

Почти каждый электродвигатель путем изменения схемы соединения фазных обмоток (звездой или треугольником) или изменением числа параллельно включенных ветвей можно подключить на другое напряжение. В табл. 5.2 и 5.3 приведено напряжение питания для стандартных электродвигателей при возможных комбинациях соединения обмоток.

Таблица 5.2. Комбинации соединения обмоток электродвигателей с напряжением питания 220/380 В

			питан	ия <i>220/</i>	300 B					
Число пар полю-	Соединение	Напря	жение пи	тания эл	ектродви	кгателя пр	ои числе	параллел	ьных вет	вей, В
сов, 2Р	обмоток	1	2	3	4	5	6	8	10	12
2P = 2	Δ	220								
	Y	380								
	2Δ		110						i	
	2Y		190				İ			
2P = 4	Δ	220								
	Y	380								
	2Δ		110							
	2Y		190							
	4∆*				5 5					
	4Y*				95					
2P = 6	Δ	220								
	Υ	380				İ		İ	<u> </u>	
	2∆*		110							
	2Y*		190							
	3∆			73						
	3Y			127						
	6Δ*						37			
	6Y*			ĺ		`	63	İ		

						<u> </u>			 	Ţ
2P = 8	Δ	220				<u> </u>				
	Y	380								i
	2∆		110							
	2Y		190							
	4Δ	ļ			55			,		
	4Y				95	 				
	8∆*							28		
	8Y*							48		
2P = 10	Δ	220								<u> </u>
	Y	380					İ			
	2∆*		110							
	2Y*		190							
	5Δ					44				
	5Y					76				
	10∆*						ļ		22	
	10Y*	}							38	
2P = 12 .	Δ	220		,						
	Y	380								
	2Δ		110							
	2Y		190				1			
	3Δ			73			İ	İ		
	3Y		į I	127						1
	4∆*				55					
	4Y*				95					
	6Δ	İ					37			Ì
	6Y						63			
	12∆*									18
	12Y*									32

Примечание. Звездочкой отмечены двухслойные схемы обмоток.

Таблица 5.3. Комбинации соединения обмоток злектродеигателей с напряжением питания 380/660 В

<u> </u>		Напол		T2UUD 20	ектродви	27000 55	M UNCOC	nananna	LULIV DOT	POŬ R
Число пар полюсов, 2Р	Соединение обмоток	напря: 1	жение пи 2	3	ектродви 4	гателя пр 5	6	параллел 8	10	12
2P = 2	Δ	380			_	3	U		10	
	Y	660			1					
	2∆		190							
	2Y		330							
2P = 4	Δ	380								
	Υ	660								
	2∆		190				,			
	2Y		330							
	4∆*				95					
	4Y*				115					
2P = 6	Δ	380								
	Υ	660							ĺ	!
	2∆*		190							
	2Y*		330							
	3∆			127						
	3Y			22 0				ļ !		
	6∆*						63			
	6Y*						110			
2P = 8	Δ	380								
	Υ	660						t L		į
	2 ∆		190					İ		
	2Y		330					<u> </u>		
	4∆				95					<u> </u>
	4Y				165			ĺ		į
	8∆*							48		1
	8Y*							83		ļ
2P = 10	Δ	380						<u> </u>		<u> </u>
	Y	660					1	[<u> </u>
	2∆*		190						<u> </u>	!
	2Y*		330							<u> </u>
	5∆					76	<u> </u>			<u> </u>
	5Y					132				!
	10∆*								38	
	10Y*		<u></u>						66	<u> </u>

2P = 12	Δ	380							
	Y	660							
	2∆		190						
	2Y		330						
	3∆			127					
	3Y			220					
	4∆*				95				
1 6 5 5	4Y*				165				
	6∆						63		
) 	6Y					ļ	110		
	12∆*								32
	12Y*								55

Примечание. Звездочкой отмечены двухслойные схемы обмоток.

5.3. Пересчет трехфазной обмотки на однофазную

Рабочая обмотка в однофазном асинхронном двигателе обычно занимает $^2/_3$ пазов сердечника статора. Число проводников в пазу статора

$$N_{p} = (0.5 - 0.7)N \frac{U_{c}}{U},$$

где: N — число проводников в пазу трехфазного двигателя; U — номинальное напряжение фазы трехфазного двигателя, B; U_c — номинальное напряжение однофазной сети, B.

Меньшие значения числового коэффициента в скобках соответствуют двигателям большей мощности (около $1~{\rm kBt}$) с кратковременным или повторнократковременным режимом работы.

Сечение и диаметр провода без изоляции для рабочей однофазной обмотки предварительно можно определить по формулам:

$$S_{p} = S \frac{N}{N_{p}} \text{ mm}^{2};$$

$$d_{p} = d\sqrt{\frac{N}{N_{p}}} \text{ mm};$$

где: S и d, соответственно, сечение и диаметр провода без изоляции трехфазного двигателя.

Пусковая обмотка укладывается в $^{\rm I}/_3$ пазов статора и обычно выполняется с повышенным сопротивлением или с бифилярными катушками. Пусковые обмотки с дополнительным внешним сопротивлением в настоящее время применяются значительно реже.

В пусковой обмотке с дополнительным внешним сопротивлением число проводников в пазу

$$N_n = (0.7 - 1)N_p;$$

сечение провода

$$S_n = (1.4 - 1)S_p \text{ mm}^2.$$

Дополнительное сопротивление определяется по формуле

$$R_n = (1,6-8) \cdot 10^{-3} \frac{U_c}{S_n}$$
, Om

и окончательно уточняется при испытании двигателя.

В пусковой обмотке с бифилярными катушками число проводников в пазу для основной секции

$$N'_{n} = (1,3-1,6)N_{n};$$

число проводников для бифилярной секции

$$N_n'' = (0.45 - 0.25)N_n';$$

общее число проводников в пазу

$$N_n = N'_n + N''_n;$$

сечение провода предварительно определяется как

$$S'_n = S''_n \approx 0.5S_p.$$

С точки зрения получения наилучших пусковых свойств применение обмотки с дополнительным внешним сопротивлением предпочтительнее, т. к. здесь имеется возможность увеличения величины пускового момента без перемотки обмотки.

Ток в рабочей обмотке однофазного двигателя (при числе параллельных ветвей (a=1)

$$I = j_p S_p$$
, A,

где: j_{p} — плотность тока в рабочей обмотке, A/mm^{2} , выбирается в пределах от 6 до $10~A/mm^{2}$ (большее значение для двухполюсных микродвигателей меньшей мощности).

Полная мощность двигателя

$$P' = U_{\epsilon}I$$
, B·A.

Мощность на валу двигателя

$$P \approx P' \eta \cos \varphi$$
, Βτ,

где: произведение η соѕ φ — энергетический КПД (табл. 5.4).

Во время пуска однофазный электродвигатель, переделанный из трехфазного, иногда застревает на низкой частоте вращения. Такое явление часто наблюдается у двухполюсных электродвигателей. Условия пуска улучшаются при увеличении воздушного зазора и применении двухслойных обмоток с укорочением шага на ¹/₃ полюсного деления.

Таблица 5.4. Энергетический КПД однофазных асинхронных двигателей с пусковым элементом

Р'	ηсоѕφ при числе полюсов						
r	2p = 2	2p = 4					
100	0,30	0,15					
150	0,32	0,19					
200	0,34	0,22					
400	0,43	0,31					
600	0,49	0,38					
800	0,52	0,43					
1000	0,54	0,46					

При перемотке трехфазных микродвигателей единой серии A, AO 0—3 габаритов можно использовать обмоточные данные однофазных микродвигателей АОЛБ, АОЛГ, так как сердечники статоров унифицированы.

В однофазных электродвигателях пусковой момент может значительно снизиться из-за падения напряжения в подводящих проводах при большой величине пускового тока, на который однофазные сети обычно не рассчитаны. В этом случае необходимо увеличить сечение подводящих проводов от источника питания.

5.4. Подбор диаметра провода и числа параллельных проводников

Диаметр заменяющего провода и число параллельных проводников подбирают по табл. 5.5. В ней использованы обозначения:

d — диаметр провода без изоляции, мм;

D — максимальный наружный диаметр провода в изоляции, мм;

 $\Pi_{\text{эл}}$ — число параллельных (элементарных) проводников;

 $\mathsf{S}_{\mathsf{e}\phi}$ — сечение эффективного проводника, мм²;

 $u = n_{_{\rm SM}} D^2$ — условная площадь, занимаемая изолированными проводниками, мм².

Таблица 5.5. Данные для подбора числа параллельных проводников при изменении диаметра провода

	Sad	S _{эф} при числе параллельных проводников						$v = n_{_{\lambda\lambda}} D^2$ при числе параллельных проводников					
ď	1	2	3	4	5	6	1	2	3	4	5	6	
0,5	0,196	0,393	0,589	0,79	0,98	1,18	0,325	0,65	0,97	1,30	1,62	1,95	
0,51	0,204	0,408	0,613	0,82	1,02	1,23	0,336	0,67	1,01	1,35	1,68	2,02	
0,53	0,221	0,441	0,662	0,88	1,10	1,32	0,360	0,72	1,08	1,44	1,80	2,16	
0,55	0,238	0,475	0,713	0,95	1,19	1,42	0,384	0,77	1,15	1,54	1,92	2,31	
0,56	0,246	0,493	0,739	0,99	1,23	1,48	0,397	0,79	1,19	1,59	1,98	2,38	
0,57	0,255	0,510	0,766	1,02	1.28	1,53	0,410	0,82	1,23	1,64	2,05	2,46	

	5. Пересчет обмоточных данных											103
	Sad	при чис	ле паралл	ельных г	роводни	KOB	$v = n_{xx}D^2$ при числе параллельных провод					ников
d	1	2	3	4	5	6	1	2	3	4	5	6
0,59	0,273	0,547	0,820	1,09	1,37	1,64	0,436	0,87	1,31	1,74	2,18	2,61
0,60	0,283	0,565	0,848	1,13	1,41	1,70	0,449	0,90	1,35	1,80	2,24	2,69
0,62	0,302	0,604	0,906	1,21	1,51	1,81	0,476	0,95	1,43	1,90	2,38	2,86
0,63	0,312	0,623	0,935	1,25	1,56	1,87	0,490	0,98	1,47	1,96	2,45	2,94
0,64	0,322	0,643	0,965	1,29	1,61	1,93	0,518	1,04	1,56	2,07	2,59	3,11
0,67	0,353	0,705	1,058	1,41	1,76	2,12	0,563	1,13	1,69	2,25	2,81	3,38
0,69	0,374	0,748	1,122	1,50	1,87	2,24	0,593	1,19	1,78	2,37	2,96	3,56
0,71	0,396	0,792	1,188	1,58	1,98	2,38	0,624	1,25	1,87	2,50	3,12	3,74
0,72	0,407	0,814	1,221	1,63	2,04	2,44	0,640	1,28	1,92	2,56	3,20	3,84
0,74	0,430	0,860	1,290	1,72	2,15	2,58	0,689	1,38	2,07	2,76	3,44	4,13
0,75	0,442	0,884	1,325	1,77	2,21	2,65	0,705	1,41	2,12	2,82	3,53	4,23
0,77	0,446	0,931	1,400	1,86	2,33	2,79	0,740	1,48	2,22	2,96	3,70	4,44
0,80	0,503	1,005	1,510	2,01	2,51	3,02	0,792	1,58	2,38	3,17	3,96	4,75
0,83	0,541	1,082	1,623	2,16	2,71	3,25	0,846	1,59	2,54	3,39	4,23	5,08
0,85	0,567	1,135	1,702	2,27	2,84	3,40	0,884	1,77	2,65	3,53	4,42	5,30
0,86	0,581	1,162	1,743	2,32	2,90	3,49	0,903	1,81	2,71	3,61	4,51	5,42
0,90	0,636	1,272	1,910	2,54	3,18	3,82	0,980	1,96	2,98	3,92	4,90	5,88
0,93	0,679	1,359	2,038	2,72	3,40	4,08	1,040	2,08	3,12	4,16	5,20	6,24
0,95	0,709	1,418	2,126	2,84	3,54	4,25	1,082	2,16	3,24	4,33	5,41	6,49
0,96	0,724	1,448	2,171	2,90	3,62	4,34	1,103	2,21	3,31	4,41	5,51	6,62
1,00	0,785	1,571	2,356	3,14	3,93	4,71	1,210	2,42	3,63	4,84	6,05	7,26
1,04	0,849	1,699	2,548	3,40	4,25	5,10	1,323	2,65	3,97	5,29	6,61	7,94
1,06	0,882	1,765	2,647	3,53	4,41	5,29	1,346	2,69	4,04	5,38	6,73	8,07
1,08	0,916	1,832	2,748	3,66	4,58	5,50	1,392	2,78	4,18	5,57	6,96	8,35
1,12	0,985	1,970	2,956	3,94	4,93	5,91	1,488	2,98	4,47	5,95	7,44	8,93
1,16	1,057	2,114	3,170	4,23	5,28	6,34	1,613	3,23	4,84	6,45	8,06	9,68
1,18	. 1,094	2,187	3,28	4,37	5,47	6,56	1,638	3,28	4,92	6,55	8,19	9,83
1,20	1,131	2,262	3,39	4,52	5,65	6,79	1,716	3,43	5,15	6,86	8,56	10,30
1,25	1,227	2,454	3,68	4,91	6,14	7,36	1,823	3,65	5,47	7,29	9,11	10,94
	1	1				1						

3,98

4,03

4,26

4,56

4,87

5,18

5,58

1,988

2,016

2,132

2,280

2,434 2,592

2,789

5,96

6,05

6,39

6,84

7,30

7,78

8,37

7,95

8,07

8,53

9,12

9,73

10,37

11,16

9,94

10,08

10,66

11,40

12,17

12,96

13,94

11,93

12,10

12,79

13,68

14,60

15,55

16,73

1,30

1,32

1,35

1,40

1,45

1,50

1,56

1,327

1,368

1,431

1,539

1,651

1,767

1,911

2,655

2,737

2,863

3,079

3,303

3,534

3,823

3,98

4,11

4,29

4,62

4,95

5,30

5,73

5,31

5,47

5,73

6,16

6,61

7,07

7,65

6,64

6,84

7,16

7,70

8,26

8,82

9,56

7,96

8,21

8,59

9,24

9,91

10,60

11,47

	Saq	при чис	ле паралл	ельных г	роводни	ков	$v = n_{_{AI}}D^2$ при числе параллельных проводников					
d	1	2	3	4	5	6	1	2	3	4	5	6
1,60	2,011	4,021	6,03	8,04	10,05	12,06	2,924	5 ,85	8,77	11,70	14,62	17,54
1,62	2,061	4,122	6,18	8,24	10,31	12,37	2,994	5,99	8,98	11,97	14,96	17,96
1,68	2,217	4,433	6,65	8,87	11,08	13,30	3,204	6,41	9,61	12,82	16,02	19,22
1,70	2,270	4,450	6,81	9,08	11,35	13,62	3,276	6,55	9,83	13,10	16,38	19,66
1,74	2,378	4,756	7,13	9,51	11,89	14,27	3,423	6,85	10,27	13,69	17,11	20,54
1,80	2,545	5,089	7,63	10,18	12,72	15,27	3,686	7,37	11,06	14,75	18,43	22,12
1,81	2,573	5,146	7,72	10,29	12,87	15,44	3,725	7,45	11,17	14,90	18,62	22,35
1,88	2,776	5,552	8,33	11,10	13,88	16,66	4,000	8,00	12,00	16,00	20,00	24,00
1,90	2,835	5,671	8,51	11,34	14,18	17,01	4,080	8,16	12,24	16,32	20,40	24,48
1,95	2,986	5,973	8,96	11,95	14,93	17,92	4,285	8,57	12,85	17,14	21,42	25,71
2,00	3,142	6,283	9,42	12,57	15,71	18,85	4,494	8,99	13,48	17,98	22,47	26,97
2,02	3,205	6,409	9,61	12,82	16,02	19,23	4,580	9,16	13,74	18,32	22,90	27,48
2,10	3,464	6,927	10,39	13,85	17,32	20,78	4,973	9,55	14,92	19,89	24,86	29,84
2,12	3,530	7,060	10,59	14,12	17,65	21,18	5,018	10,04	15,05	20,07	25,09	30,11
2,24	3,941	7,882	11,82	15,76	19,70	23,64	5,617	11,23	16,85	22,47	28,08	33,70
2,26	4,011	8,023	12,03	16,05	20,06	24,07	5,712	11,42	17,14	22,85	28,56	34,27
2,36	4,347	8,749	13,12	17,50	21,87	26,25	6,200	12,40	18,60	24,80	31,00	37,20
2,44	4,676	9,352	14,03	18,70	23,38	28,06	6,605	13,21	19,81	26,42	33,02	39,63
2,50	4,909	9,817	14,73	19,63	24,54	29,45	6,917	13,83	20,75	27,67	34,58	41,50

Примечание. $v = n_{..}D^2$ приведено для проводов марок ПЭВ-2, ПЭМ-2, ПЭТ-155, ПЭТВ-2.

5.5. Замена круглого обмоточного провода двумя проводами

Отсутствующий провод нужного диаметра можно заменить двумя проводами. Суммарное их сечение должно быть равным или несколько большим сечения заменяемого провода. Допустимо небольшое (на 2—3 %) уменьшение сечения без понижения мощности двигателя.

Для трехфазных обмоток возможность выбора диаметров заменяющих проводов может быть расширена путем изменения соединения фаз. Если фазы были соединены в треугольник, то при изменении соединения на звезду ток в фазе обмотки увеличится в 1,73 раза, во столько же раз надо увеличить и сечение провода. Число эффективных проводников в пазу в этом случае должно быть уменьшено также в 1,73 раза, так как при изменении соединения фаз на звезду соответственно уменьшится и напряжение фазы обмотки.

При изменении соединения фаз со звезды на треугольник ток и сечение провода уменьшаются в 1,73 раза, число эффективных проводников в пазу должно быть увеличено в 1,73 раза.

Изменение соединения фаз в двигателях, рассчитанных на два номинальных напряжения, можно осуществлять, если заранее известно, при каком напряжении будет эксплуатироваться отремонтированный двигатель.

Увеличение суммарного сечения проводов допустимо с точки зрения сохранения мощности, но ограничивается возможностью размещения обмотки в пазах. Следует заметить, что при переходе на звезду при низшем напряжении возможность выбора провода с увеличением сечения возрастает, так как уменьшается число проводников в пазу.

Для удобства подбора диаметров заменяющих проводов приведена табл. 5.6. В ней использованы обозначения:

d — диаметр заменяемого провода, мм;

 d_1 и d_2 — диаметры заменяющих проводов при сохранении соединения фаз, мм;

 d_3 и d_4 — то же при изменении соединения фаз с Δ на Y, мм;

 d_5 и d_6 — то же при изменении соединения фаз со Y на Δ , мм.

Таблица 5.6. Таблица замены диаметров проводов

-			
d	d ₁ ; d ₂	d ₃ ; d ₄	d ₅ ; d ₆
0,47	-	0,62	-
0,49	-	0,64	_
0,51	-	0,67	-
0,53	-	0,69	-
0,55	_	0,72	_
0,57	_	0,74	_
0,59	_	0,77	-
0,62	_	0,44; 0,69	0,47
0,64	_	0,44; 0,72	0,49
	_	0,47; 0,69	- 1
	_	0,49; 0,69	_
0,67	_	0,44; 0,77	0,51
	_	0,47; 0,74	_
	_	0,51; 0,72	-
	_	0,55; 0,69	_
0,69	_	0,90	0,53
		0,44; 0,80	-
	_	0,47; 0,77	
	_	0,49; 0,77	
		0,51; 0,74	
	_	0,53; 0,74	_
	_	0,55; 0;72	-

d	d1; d2	d ₃ ; d ₄	d ₅ ; d ₆
0,69	_	0,59; 0,69	<u> </u>
0,72	_	0,44; 0,83	0,55
	-	0,47; 0,83	-
	-	0,49; 0;80	_
	_	0,51; 0,80	<u> </u>
	-	0,55; 0,77	-
ľ	-	0,59; 0,74	_
	-	0,62; 0,72	ĺ –
	_	0,64; 0,69	-
0,74	-	0,96	0,57
	-	0,44; 0,86	-
	-	0,47; 0,86	-
	_	0,49; 0,83	-
	_	0,51; 0,83	-
	_	0,55; 0,80	-
	_	0,57; 0,80	-
	-	0,59; 0,77	ļ –
	· –	0,62; 0,74	-
	-	0,64; 0,74	-
	-	0,69; 0,69	-
0,77		1,00	0,59
	_	0,47; 0,90	<u> </u>

		01,100				Соднных	•	
d	d ₁ ; d ₂	d ₃ ; d ₄	d ₅ ; d ₆] [ď	d ₁ ; d ₂	d 3; d4	d5; d6
0,77	-	0,53; 0,86	-		0,86	-	0,72; 0,86	-
	_	0,55; 0,86	-			-	0,74; 0,86	<u> </u>
	-	0,57; 0,83	-			_	0,77; 0,83	-
	-	0,59; 0,83	-			-	0,80; 0,80	l –
	_	0,62; 0,80	-		0,90	0,47; 0,80	0,49; 1,08	0,69
	-	0,67; 0,77	-			0,51; 0,77	0,55; 1,04	-
	_	0,69; 0;74	-			0,53; 0,72	0,57; 1,04	_
	_	0,72; 0,72	-			0,55; 0,72	0,62; 1,00	-
0,80	-	1,04	-			0,57; 0,69	0,64; 1,00	<u> </u>
	-	0,44, 0,96	_			-	0,69; 0,96	<u> </u>
	-	0,49; 0,93	_			-	0,72; 0,93	-
	_	0,51; 0,93	-			_	0,74; 0,93	-
	-	0,53; 0,90	-			-	0,77; 0,90	_
	-	0,55; 0,90	j -			_	0,80; 0,86	<u> </u>
	-	0,59; 0,86	_			_	0,83; 0,83	<u> </u>
	_	0,62; 0,86	_		0,93	0,47; 0,80	0,49; 1,12	0,72
	-	0,64; 0,86	-			0,51; 0,77	0,51; 1,12	_
	_	0,67; 0,80	-			0,53; 0,77	0,57; 1,08	_
	-	0,69; 0,80	-			0,55; 0,74	0,59; 1,08	_
	_	0,72; 0,77	_		İ	0,57; 0,72	0,64; 1,04	_
	-	0,74; 0,74				0,62; 0,69	0,69; 1,00	_
0,83	0,47; 0,69	1,08	-			-	0,72; 1,00	-
	-	0,44; 1,00	-			_	0,77; 0,96	_
	-	0,51; 0,96				-	0,80; 0,93	-
	~	0,53; 0,96	<u> </u>			-	0,86; 0,86	-
	-	0,57; 0,93	_		0,96	0,44; 0,86	1,25	0,74
	_	0,62; 0,90	_			0,47; 0,83	0,49; 1,16	-
	· ~	0,67; 0,86	_			0,49; 0,83	0,51; 1,16	_
	_	0,72; 0,83	-			0,53; 0,80	0,57; 1,12	
	-	0,74; 0,80	-			0,57; 0,77	0,59; 1,12	_
		0,77; 0,77	_			0,62; 0,74	0,64; 1,08	-
0,86	0,44; 0,74	1,12	_			0,64; 0,72	0,72; 1,04	_
	0,47; 0,72	0,47, 1,04	_	ļ,		0,67; 0,69	0,77; 1,00	-
	0,51; 0,69	0,51; 1,00				_	0,83; 0,96	-
	_	0,59; 0,96	_				0,86; 0,93	<u> </u>
	-	0,64; 0,93	_				0,90; 0,90	! -
	_	0,67; 0,90	_		1,00	0,44; 0,90	0,53; 1,120	0,77
	_	0,69; 0,90	_			0,51; 0,86	0,55; 1,20	<u> </u>

đ	d ₁ ; d ₂	d ₃ ; d ₄	ds; d ₆ ′	đ	đ1; đ2	₫3; d₄	d ₅ ; d ₆
1,00	0,55; 0,83	0,62; 1,16	-	1,12	0,80; 0,80	1,00; 1,08	-
	0,57; 0,83	0,64; 1,16	-		_	1,04; 1,04	-
	0,59; 0,80	0,69; 1,12	_	1,16	0,44; 1,08	0,59; 1,40	0,44: 0,77
	0,64; 0,77	0,74; 1,08	-		0,51; 1,04	0,62; 1,40	0,47; 0,74
	0,67; 0,74	0,80; 1,04	_		0,59; 1,00	0,69; 1,35	0,49; 0,74
	0,69; 0,72	0,86; 1,00	-		0,64; 0,96	0,72; 1,35	0,51; 0,72
	_	0,90; 0,96	_		0,64; 0,93	0,80; 1,30	0,55; 0,69
	_	0,93; 0,93	_		0,72; 0,90	0,86; 1,25	_
1,04	0,47; 0,93	0,55; 1,25	0,80		0,74; 0,90	0,93; 1,20	_
	0,51; 0,90	0,57; 1,25	-		0,77; 0,86	0,96; 1,20	
	0,53; 0,90	0,64; 1,20	-		0,80; 0,83	1,00; 1,16	i -
	0,57; 0,86	0,72; 1,16	_		_	1,04; 1,12	-
i	0,59; 0,86	0,74; 1,16	-		_	1,08; 1,08	<u> </u>
	0,62; 0,83	0,80; 1,12	-	1,20	0,44; 1,12	1,56	0,90
	0,67; 0,80	0,83; 1,08	_		0,51; 1,08	0,62; 1,45	0,44; 0,80
	0,69; 0,77	0,90; 1,04	_		0,53; 1,08	0,64; 1,45	0,49; 0,77
	0,72; 0,74	0,93; 1,00	_	i i	0,59; 1,04	0,72; 1,40	0,53; 0,74
	0,74; 0,74	0,96; 0,96	-		0,67; 1,00	0,80; 1,35	0,55; 0,72
1,08	0,49; 0,96	0,57; 1,30	0,83		0,72; 0,96	0,83; 1,35	0,59; 0,69
	0,51; 0,96	0,59; 1,30	0,44; 0,69		0,77; 0,93	0,90; 1,30	-
	0,55; 0,93	0,67; 1,25			0,80; 0,90	0,96; 1,25	<u> </u>
	0,59; 0,90	0,69; 1,25	-		0,83; 0,86	1,04; 1,20	-
	0,64; 0,86	0,74; 1,20	-		-	1,08; 1,16	į –
	0,69; 0,83	0,77; 1,20	-		-	1,12; 1,12	-
	0,72; 0,80	0,83; 1,16	-	1,25	0,47; 1,16	0,67; 1,50	0,47; 0,83
	0,77; 0,77	0,86; 1,12	-		0,55; 1,12	0,69; 1,50	0.51; 0.80
	-	0,93; 1,08	-		0,57; 1,12	0,77; 1,45	0,55; 0,77
	-	0,96; 1,04	-		0,62; 1,08	0,80; 1,45	0,59: 0,74
		1,00; 1,00	-		0,64; 1,08	0,86; 1,40	0,62; 0,72
1,12	0,49; 1,00	0,57; 1,35	0,86		0,69; 1,04	0,93; 1,35	<u> </u>
	0,51; 1,00	0,59; 1,35	0,49; 0,69		0,74; 1,00	0,96; 1,35	-
	0,57; 0,96	0,67; 1,30	_		0,80; 0,96	1,00; 1,30	_
	0,59; 0,96	0,69; 1,30			0,83; 0,93	1,08; 1,25	_
	0,62; 0,93	0,77; 1,25	_		0,86; 0,90	1,12; 1,20	_
	0,67; 0,90	0,80; 1,25	_		_	1,16; 1,16	_
	0,72; 0,86	0,86; 1,20	_	1,30	0,49; 1,20	0,69; 1,56	0,47; 0,86
	0,74; 0,83	0,90; 1,16	_		0,51; 1,20	0,72; 1,56	0,49; 0,86
1	0,77; 0,80	0,96; 1,12	_		0,57; 1,16	0,80; 1,50	0,53; 0,83

0.64; 1,12 0,90; 1,45 0.59; 0,80 0.67; 1,12 0.93; 1,45 0,62; 0,77 0.72; 1,08 1,00; 1,40 0,67; 0,72 0.74; 1,08 1,04; 1,35 — 0.77; 1,04 1,12; 1,30 — 0.77; 1,04 1,12; 1,30 — 0.83; 1,00 1,16; 1,25; — 0.90; 0,93 1,22; 1,62 0,44; 0,93 0,51; 1,25 0,74; 1,62 0,44; 0,93 0,51; 1,25 0,74; 1,62 0,49; 0,90 0,62; 1,20 0,83; 1,56 0,55; 0,86 0,62; 1,20 0,83; 1,56 0,57; 0,86 0,69; 1,16 0,93; 1,50 0,59; 0,86 0,69; 1,16 0,93; 1,55 0,57; 0,86 0,69; 1,16 0,93; 1,55 0,57; 0,86 0,69; 1,16 0,93; 1,50 0,59; 0,86 0,77; 1,12 1,00; 1,45 0,72; 0,72 0,80; 1,61 1,04; 1,45 0,72; 0,72 0,90; 1,00 1,12; 1,40 — 0,99; 0,96 1,16; 1,35 — 1,40									
0,64; 1,12 0,90; 1,45 0,59; 0,80 0,67; 1,12 0,93; 1,45 0,62; 0,77 0,72; 1,08 1,00; 1,40 0,67; 0,72 0,74; 1,08 1,04; 1,35 — 0,77; 1,04 1,12; 1,30 — 0,83; 1,00 1,16; 1,25; — 0,90; 0,93 1,20; 1,20 — 1,35 0,49; 1,25 0,72; 1,62 0,44; 0,93 0,51; 1,25 0,74; 1,62 0,49; 0,90 0,62; 1,20 0,83; 1,56 0,57; 0,86 0,67; 1,16 0,93; 1,55 0,57; 0,86 0,69; 1,16 0,93; 1,55 0,57; 0,86 0,69; 1,16 0,93; 1,55 0,57; 0,86 0,69; 1,16 0,93; 1,55 0,57; 0,86 0,69; 1,16 0,93; 1,55 0,57; 0,86 0,69; 1,16 0,99; 1,30 0,77; 1,12 0,80; 1,08 1,04; 1,45 0,72; 0,78 0,69; 1,16 0,99; 1,30 0,77; 0,16 0,69; 1,16 0,99; 1,30 0,77; 0,14 0,80; 1,16 0,99; 1,04 1,08; 1,14 <td>d</td> <td>d₁; d₂</td> <td>d₃; d₄</td> <td>d₅; d₆</td> <td></td> <td>d</td> <td>d₁; d₂</td> <td>d₃; d₄</td> <td>d₅; d₆</td>	d	d ₁ ; d ₂	d ₃ ; d ₄	d ₅ ; d ₆		d	d ₁ ; d ₂	d ₃ ; d ₄	d ₅ ; d ₆
0.67; 1,12 0.93; 1,45 0.62; 0,77 0.72; 1,08 1,00; 1,40 0,67; 0,72 0.74; 1,08 1,00; 1,40 0,67; 0,72 0,77; 1,04 1,12; 1,30 — 0,83; 1,00 1,16; 1,25; — 0,90; 0,93 1,20; 1,20 — 1,35 0,49; 1,25 0,72; 1,62 0,44; 0,93 0,62; 1,20 0,83; 1,56 0,55; 0,86 0,62; 1,20 0,83; 1,50 0,55; 0,86 0,62; 1,20 0,83; 1,50 0,57; 0,86 0,69; 1,16 0,93; 1,50 0,59; 0,86 0,67; 1,12 0,96; 1,50 0,54; 0,80 0,77; 1,12 0,96; 1,50 0,54; 0,80 0,77; 1,12 0,96; 1,50 0,54; 0,80 0,77; 1,12 0,10; 1,45 0,72; 0,74 0,86; 1,04 1,08; 1,40 0,72; 0,74 0,86; 1,04 1,08; 1,40 0,72; 0,74 0,86; 1,04 1,08; 1,40 0,72; 0,74 0,86; 1,04 1,08; 1,40 0,72; 0,74 0,96; 0,96 1,16; 1,35 — <td>1,30</td> <td>0,59; 1,16</td> <td>0,83; 1,50</td> <td>0,57; 0,80</td> <td>Ī</td> <td>1,45</td> <td>0,74; 1,25</td> <td>1,08; 1,56</td> <td>0,69; 0,86</td>	1,30	0,59; 1,16	0,83; 1,50	0,57; 0,80	Ī	1,45	0,74; 1,25	1,08; 1,56	0,69; 0,86
0,72; 1,08 1,00; 1,40 0,67; 0,72 0,74; 1,08 1,04; 1,35 — 0,77; 1,04 1,12; 1,30 — 0,83; 1,00 1,16; 1,25; — 0,90; 0,93 1,20; 1,20 — 1,35 0,49; 1,25 0,72; 1,62 0,44; 0,93 0,51; 1,25 0,74; 1,62 0,49; 0,90 0,55; 1,40 0,80; 1,81 0,53; 1,00 0,62; 1,20 0,83; 1,56 0,55; 0,86 0,67; 1,16 0,93; 1,50 0,55; 0,86 0,67; 1,15 0,99; 1,74 0,62; 0,9 0,69; 1,16 0,93; 1,50 0,59; 0,83 0,74; 1,30 0,99; 1,74 0,62; 0,9 0,77; 1,12 1,00; 1,45 0,67; 0,77 0,64; 1,35 0,99; 1,74 0,62; 0,9 0,77; 1,12 1,00; 1,45 0,67; 0,77 0,67; 1,35 0,99; 1,74 0,62; 0,9 0,77; 1,12 1,00; 1,45 0,67; 0,77 0,69; 1,16 1,20; 1,30 0,77; 0,8 0,80; 1,08 1,04; 1,40 0,72; 0,72 0,99; 1,00 1,12; 1,40 — 1,09; 1,01 1,12; 1,40 —<		0,64; 1,12	0,90; 1,45	0,59; 0,80			0,80; 1,20	1,12; 1,56	0,72;0,83
0,74; 1,08 1,04; 1,35 — 0,77; 1,04 1,12; 1,30 — 0,83; 1,00 1,16; 1,25; — 0,90; 0,93 1,20; 1,20 — 1,35 0,49; 1,25 0,72; 1,62 0,44; 0,93 0,51; 1,25 0,74; 1,62 0,49; 0,90 0,62; 1,20 0,83; 1,56 0,55; 0,86 0,67; 1,16 0,86; 1,56 0,55; 0,86 0,67; 1,16 0,93; 1,50 0,59; 0,83 0,67; 1,12 0,99; 1,50 0,59; 0,83 0,74; 1,12 0,96; 1,50 0,64; 0,80 0,77; 1,12 1,00; 1,45 0,67; 0,77 0,80; 1,08 1,04; 1,45 0,72; 0,74 0,80; 1,08 1,04; 1,45 0,72; 0,74 0,80; 1,00 1,12; 1,40 — 0,96; 0,96 1,16; 1,35 — 1,40 0,49; 1,30 0,74; 1,58 0,57; 0,90 0,62; 1,25 0,86; 1,62 0,57; 0,90 0,64; 1,25 0,90; 1,62 0,52; 0,93 1,40 0,49; 1,00 0,72; 1,68 <		0,67; 1,12	0,93; 1,45	0,62; 0,77			0,83; 1,20	1,16; 1,50	-
0,77; 1,04		0,72; 1,08	1,00; 1,40	0,67; 0,72			0,86; 1,16	1,20; 1,50	_
0.83; 1.00		0,74; 1,08	1,04; 1,35	_			0,93; 1,12	1,25; 1,45	-
0,90; 0,93		0,77; 1,04	1,12; 1,30	-			0,96; 1,08	1,30; 1,40	-
1,35		0,83; 1,00	1,16; 1,25;	_			1,00; 1,04	1,35; 1,35	-
0,51; 1,25 0,74; 1,62 0,49; 0,99 0,52; 1,20 0,83; 1,56 0,55; 0,86 0,57; 1,16 0,86; 1,56 0,57; 0,86 0,58; 1,16 0,93; 1,50 0,59; 0,83 0,74; 1,12 0,96; 1,50 0,64; 0,80 0,77; 1,12 1,00; 1,45 0,67; 0,77 0,80; 1,08 1,04; 1,45 0,72; 0,74 0,86; 1,04 1,08; 1,40 0,72; 0,72 0,90; 1,00 1,12; 1,40 - 1,40 0,49; 1,30 0,74; 1,68 0,51; 0,93 0,51; 1,30 0,77; 1,68 0,51; 0,93 0,51; 1,30 0,77; 1,68 0,51; 0,93 0,51; 1,30 0,77; 1,68 0,51; 0,93 0,52; 1,25 0,86; 1,62 0,57; 0,90 0,52; 1,25 0,86; 1,62 0,57; 0,90 0,52; 1,20 0,96; 1,56 0,67; 0,83 0,77; 1,16 1,08; 1,50 0,77; 0,90 0,52; 1,20 0,96; 1,56 0,67; 0,83 0,77; 1,16 1,08; 1,50 0,74; 0,77 0,80; 1,16 1,12; 1,45 <	<u> </u>	0,90; 0,93	1,20; 1,20	_		1,50	0,53; 1,40	1,95	0,47; 1,04
0,62; 1,20 0,83; 1,56 0,55; 0,86 0,67; 1,16 0,86; 1,56 0,57; 0,86 0,69; 1,16 0,93; 1,50 0,59; 0,83 0,74; 1,12 0,96; 1,50 0,64; 0,80 0,77; 1,12 1,00; 1,45 0,67; 0,77 0,80; 1,08 1,04; 1,45 0,72; 0,74 0,86; 1,04 1,08; 1,40 0,72; 0,72 0,90; 1,00 1,12; 1,40 - 0,96; 0,96 1,16; 1,35 - 1,40 0,49; 1,30 0,74; 1,68 0,51; 0,93 0,51; 1,30 0,77; 1,68 0,53; 0,93 0,51; 1,30 0,77; 1,68 0,53; 0,93 0,51; 1,30 0,77; 1,68 0,53; 0,93 0,51; 1,20 0,96; 1,56 0,67; 0,83 0,72; 1,20 0,96; 1,56 0,67; 0,83 0,77; 1,16 1,08; 1,56 0,67; 0,83 0,77; 1,16 1,08; 1,56 0,67; 0,83 0,77; 1,16 1,08; 1,50 0,74; 0,77 0,80; 1,16 1,12; 1,45 - 0,90; 1,08 1,20; 1,40 - <td>1,35</td> <td>0,49; 1,25</td> <td>0,72; 1,62</td> <td>0,44; 0,93</td> <td></td> <td>,</td> <td>0,55; 1,40</td> <td>0,80; 1,81</td> <td>0,53; 1,00</td>	1,35	0,49; 1,25	0,72; 1,62	0,44; 0,93		,	0,55; 1,40	0,80; 1,81	0,53; 1,00
0.67; 1,16		0,51; 1,25	0,74; 1,62	0,49; 0,90			0,64; 1,35	0,83; 1,81	0,55; 1,00
0,69; 1,16 0,93; 1,50 0,59; 0,83 0,74; 1,12 0,96; 1,50 0,64; 0,80 0,77; 1,12 1,00; 1,45 0,67; 0,77 0,80; 1,08 1,04; 1,45 0,72; 0,74 0,86; 1,04 1,08; 1,40 0,72; 0,72 0,90; 1,00 1,12; 1,40 — 0,96; 0,96 1,16; 1,35 — 1,40 0,49; 1,30 0,74; 1,68 0,51; 1,30 0,77; 1,68 0,51; 0,93 0,62; 1,25 0,86; 1,62 0,57; 0,90 0,64; 1,25 0,90; 1,62 0,57; 0,90 0,64; 1,25 0,90; 1,62 0,57; 0,90 0,64; 1,25 0,96; 1,56 0,57; 0,90 0,64; 1,25 0,90; 1,62 0,57; 0,90 0,72; 1,20 0,96; 1,56 0,57; 0,90 0,72; 1,20 0,96; 1,56 0,57; 0,83 0,77; 1,16 1,08; 1,55 0,93; 1,25 0,80; 1,16 1,12; 1,45 — 0,80; 1,16 1,12; 1,45 — 0,90; 1,08 1,20; 1,40 — 0,77; 1,16 <td></td> <td>0,62; 1,20</td> <td>0,83; 1,56</td> <td>0,55; 0,86</td> <td></td> <td></td> <td>0,67; 1,35</td> <td>0,90; 1,74</td> <td>0,62; 0,96</td>		0,62; 1,20	0,83; 1,56	0,55; 0,86			0,67; 1,35	0,90; 1,74	0,62; 0,96
0,74; 1,12 0,96; 1,50 0,64; 0,80 0,77; 1,12 1,00; 1,45 0,67; 0,77 0,80; 1,08 1,04; 1,45 0,72; 0,74 0,86; 1,04 1,08; 1,40 0,72; 0,72 0,90; 1,00 1,12; 1,40 - 0,96; 0,96 1,16; 1,35 - - 1,20; 1,30 - - 1,25; 1,25 - 0,62; 1,25 0,86; 1,62 0,57; 0,90 0,64; 1,25 0,90; 1,60 0,68; 1,62 0,77; 1,16 1,08; 1,50 0,67; 0,83 0,77; 1,16 1,08; 1,50 0,67; 0,83 0,77; 1,16 1,08; 1,50 0,67; 0,83 0,77; 1,16 1,08; 1,56 0,69; 0,86 0,77; 1,16 1,08; 1,50 0,74; 0,77 0,80; 1,16 1,12; 1,45 - 0,90; 1,08 1,20; 1,40 - 0,90; 1,08 1,20; 1,40 - 0,83; 1,12 1,16; 1,45 - 0,90; 1,08 1,20; 1,40 - 0,90; 1,08 1,20; 1,40 -		0,67; 1,16	0,86; 1,56	0,57; 0,86			0,74; 1,30	0,93; 1,74	0,67; 0,93
0,77; 1,12 1,00; 1,45 0,67; 0,77 0,80; 1,08 1,04; 1,45 0,72; 0,74 0,86; 1,04 1,08; 1,40 0,72; 0,72 0,90; 1,00 1,12; 1,40 - 0,96; 0,96 1,16; 1,35 - - 1,20; 1,30 - - 1,25; 1,25 - 0,62; 1,25 0,86; 1,62 0,57; 0,90 0,64; 1,25 0,90; 1,62 0,62; 0,86 0,77; 1,16 1,03; 1,45 - 0,77; 1,16 1,04; 1,08 1,35; 1,45 - 0,77; 1,33 - 1,56 0,67; 1,40 2,02 0,47; 1,0 0,51; 1,30 0,77; 1,68 0,53; 0,93 0,69; 1,40 0,80; 1,88 0,49; 1,0 0,62; 1,25 0,86; 1,62 0,57; 0,90 0,62; 1,25 0,86; 1,62 0,57; 0,80 0,77; 1,16 1,00; 1,56 0,69; 0,80 1,00; 1,20 1,16; 1,68 0,69; 0,9 0,77; 1,16 1,08; 1,50 0,74; 0,7 1,08; 1,12 1,25; 1,62 0,77; 0,9 0,80; 1,16 <		0,69; 1,16	0,93; 1,50	0,59; 0,83			0,77; 1,30	0,96; 1,74	0,69; 0,90
0,80; 1,08 1,04; 1,45 0,72; 0,74 0,86; 1,04 1,08; 1,40 0,72; 0,72 0,90; 1,00 1,12; 1,40 - 0,96; 0,96 1,16; 1,35 - - 1,20; 1,30 - - 1,20; 1,30 - - 1,25; 1,25 - 0,62; 1,25 0,86; 1,62 0,57; 0,90 0,62; 1,25 0,86; 1,62 0,57; 0,90 0,64; 1,25 0,90; 1,62 0,62; 0,86 0,72; 1,20 0,96; 1,56 0,67; 0,83 0,77; 1,16 1,08; 1,50 0,74; 0,77 0,80; 1,16 1,12; 1,45 - 0,99; 1,08 1,20; 1,40 - 0,99; 1,08 1,21; 1,45 - 0,99; 1,08 1,06; 1,40 0,83; 1,25 1,00; 1,20 1,16; 1,68 0,69; 0,80 0,77; 1,16 1,08; 1,50 0,74; 0,77 0,80; 1,16 1,12; 1,45 - 0,99; 1,08 1,20; 1,40 - 0,99; 1,08 1,20; 1,45 - <tr< td=""><td></td><td>0,74; 1,12</td><td>0,96; 1,50</td><td>0,64; 0,80</td><td></td><td></td><td>0,83; 1,25</td><td>1,04; 1,68</td><td>0,74; 0,86</td></tr<>		0,74; 1,12	0,96; 1,50	0,64; 0,80			0,83; 1,25	1,04; 1,68	0,74; 0,86
0,86; 1,04		0,77; 1,12	1,00; 1,45	0,67; 0,77			0,90; 1,20	1,12; 1,62	0,77; 0,83
0,90; 1,00 1,12; 1,40 - 0,96; 0,96 1,16; 1,35 - - 1,20; 1,30 - - 1,25; 1,25 - 1,40 0,49; 1,30 0,74; 1,68 0,51; 0,93 0,51; 1,30 0,77; 1,68 0,53; 0,93 0,62; 1,25 0,86; 1,62 0,57; 0,90 0,64; 1,25 0,90; 1,62 0,62; 0,86 0,72; 1,20 0,96; 1,56 0,67; 0,83 0,77; 1,16 1,08; 1,50 0,74; 0,77 0,80; 1,12 1,16; 1,45 - 0,90; 1,08 1,20; 1,40 - 0,93; 1,12 1,16; 1,45 - 0,93; 1,12 1,16; 1,45 - 0,93; 1,04 1,25; 1,35 - 0,93; 1,04 1,25; 1,35 - 1,45 0,53; 1,35 0,77; 1,74 0,47; 1,00 0,55; 1,35 0,80; 1,74 0,53; 0,96 0,62; 1,30 0,90; 1,68 0,55; 0,96		0,80; 1,08	1,04; 1,45	0,72; 0,74			0,96; 1,16	1,20; 1,56	0,80; 0,80
0.96; 0.96 1,16; 1,35 - 1,20; 1,30 - 1,56 0,67; 1,40 2,02 0,47; 1,0 0,49; 1,0 0,69; 1,40 0,80; 1,88 0,49; 1,0 0,49; 1,0 0,69; 1,40 0,80; 1,88 0,49; 1,0 0,49; 1,0 0,69; 1,40 0,80; 1,88 0,49; 1,0 0,49; 1,0 0,69; 1,40 0,80; 1,88 0,49; 1,0 0,69; 1,0 0,69; 1,40 0,80; 1,88 0,49; 1,0 0,55; 1,0 0,69; 1,40 0,80; 1,88 0,49; 1,0 0,55; 1,0 0,69; 1,40 0,80; 1,38 0,49; 1,0 0,55; 1,0 0,69; 1,40 0,80; 1,38 0,49; 1,0 0,55; 1,0 0,69; 1,40 0,80; 1,38 0,49; 1,0 0,55; 1,0 0,69; 1,40 0,80; 1,38 0,49; 1,0 0,55; 1,0 0,80; 1,35 0,93; 1,81 0,55; 1,0 0,59; 1,0 0,86; 1,35 0,93; 1,81 0,62; 1,0 0,62; 1,0 0,62; 1,0 0,62; 1,0 0,62; 1,0 0,64; 1,0 0,64; 1,0 0,64; 1,0 0,64; 1,0 0,64; 1,0 0,64; 1,0 0,64; 1,0 0,64; 1,0 0,64; 1,0 0,64; 1,1 0,64; 1,0 0,64; 1,0 0,64; 1,0 0,64; 1,0		0,86; 1,04	1,08; 1,40	0,72; 0,72			1,00; 1,12	1,30; 1,50	
- 1,20; 1,30 - - 1,25; 1,25 - 1,40 0,49; 1,30 0,74; 1,68 0,51; 0,93 0,51; 1,30 0,77; 1,68 0,53; 0,93 0,62; 1,25 0,86; 1,62 0,57; 0,90 0,64; 1,25 0,90; 1,62 0,62; 0,86 0,72; 1,20 0,96; 1,56 0,67; 0,83 0,74; 1,20 1,00; 1,56 0,69; 0,80 0,77; 1,16 1,08; 1,50 0,74; 0,77 0,80; 1,16 1,12; 1,45 - 0,93; 1,04 1,25; 1,35 - 0,93; 1,04 1,25; 1,35 - - 1,30; 1,30 - 1,45 0,53; 1,35 0,80; 1,16 0,55; 1,35 0,80; 1,40 - 0,90; 1,08 1,20; 1,40 - - 1,30; 1,30 - - 1,35; 1,56 0,53; 0,96 0,55; 1,35 0,80; 1,74 0,47; 1,00 0,93; 1,04 1,25; 1,35 - - 1,40; 1,50 - - 1,45; 1,45 - 0,93; 1,40 0,86; 1,95 </td <td>ļ</td> <td>0,90; 1,00</td> <td>1,12; 1,40</td> <td>-</td> <td></td> <td></td> <td>1,04; 1,08</td> <td>1,35; 1,45</td> <td>- </td>	ļ	0,90; 1,00	1,12; 1,40	-			1,04; 1,08	1,35; 1,45	-
- 1,25; 1,25 - 1,40 0,49; 1,30 0,74; 1,68 0,51; 0,93 0,51; 1,30 0,77; 1,68 0,53; 0,93 0,62; 1,25 0,86; 1,62 0,57; 0,90 0,64; 1,25 0,90; 1,62 0,62; 0,86 0,72; 1,20 0,96; 1,56 0,67; 0,83 0,74; 1,20 1,00; 1,56 0,69; 0,80 0,77; 1,16 1,08; 1,50 0,74; 0,77 0,80; 1,16 1,12; 1,45 - 0,90; 1,08 1,20; 1,40 - 0,90; 1,08 1,20; 1,30 - 1,45 0,53; 1,35 0,77; 1,74 0,47; 1,00 0,55; 1,30 0,90; 1,68 0,59; 0,96	1	0,96; 0,96	1,16; 1,35	_			_	1,40; 1,40	-
1,40 0,49; 1,30 0,74; 1,68 0,51; 0,93 0,51; 1,30 0,77; 1,68 0,53; 0,93 0,62; 1,25 0,86; 1,62 0,57; 0,90 0,64; 1,25 0,90; 1,62 0,62; 0,86 0,72; 1,20 0,96; 1,56 0,67; 0,83 0,74; 1,20 1,00; 1,56 0,69; 0,80 0,77; 1,16 1,08; 1,50 0,74; 0,77 0,80; 1,16 1,12; 1,45 - 0,90; 1,08 1,20; 1,40 - 0,93; 1,04 1,25; 1,35 - 1,45 0,53; 1,35 0,80; 1,74 0,47; 1,00 0,55; 1,35 0,80; 1,18 0,55; 1,0 0,90; 1,08 1,00; 1,20 1,16; 1,68 0,69; 0,9 1,04; 1,16 1,20; 1,68 0,74; 0,9 1,08; 1,12 1,25; 1,62 0,77; 0,9 0,80; 1,16 1,12; 1,45 - 0,90; 1,08 1,20; 1,40 - 1,45; 1,45 - 0,93; 1,24 1,25; 1,35 - 1,45; 1,45 2,10 0,74; 1,45 0,83; 1,40 0,80; 1,40 0,86; 1,95 0,59; 1,0 </td <td></td> <td></td> <td>1,20; 1,30</td> <td>_</td> <td></td> <td>1,56</td> <td>0,67; 1,40</td> <td>2,02</td> <td>0,47; 1,08</td>			1,20; 1,30	_		1,56	0,67; 1,40	2,02	0,47; 1,08
0.51; 1,30 0,77; 1,68 0,53; 0,93 0.62; 1,25 0,86; 1,62 0,57; 0,90 0,64; 1,25 0,90; 1,62 0,62; 0,86 0,72; 1,20 0,96; 1,56 0,67; 0,83 0,74; 1,20 1,00; 1,56 0,69; 0,80 0,77; 1,16 1,08; 1,50 0,74; 0,77 0,80; 1,16 1,12; 1,45 - 0,90; 1,08 1,20; 1,40 - 0,93; 1,21 1,16; 1,45 - 0,93; 1,12 1,16; 1,45 - 0,93; 1,12 1,16; 1,45 - 0,93; 1,140 1,25; 1,35 - 0,93; 1,145 2,10 0,51; 1,1 0,90; 1,08 1,20; 1,40 - 0,93; 1,145 2,10 0,51; 1,1 0,90; 1,08 0,53; 1,35 0,77; 1,74 0,55; 1,35 0,77; 1,74 0,47; 1,00 0,55; 1,35 0,80; 1,74 0,53; 0,96 0,62; 1,30 0,90; 1,68 0,55; 0,96		<u> </u>	1,25; 1,25	-			0,69; 1,40	0,80; 1,88	0,49; 1,08
0,62; 1,25 0,86; 1,62 0,57; 0,90 0,64; 1,25 0,90; 1,62 0,62; 0,86 0,72; 1,20 0,96; 1,56 0,67; 0,83 0,74; 1,20 1,00; 1,56 0,69; 0,80 0,77; 1,16 1,08; 1,50 0,74; 0,77 0,80; 1,16 1,12; 1,45 - 0,90; 1,08 1,20; 1,40 - 0,93; 1,04 1,25; 1,35 - 1,45 0,53; 1,35 0,77; 1,74 0,47; 1,00 0,55; 1,35 0,80; 1,74 0,53; 0,96 0,62; 1,30 0,90; 1,68 0,55; 0,96	1,40	0,49; 1,30	0,74; 1,68	0,51; 0,93			0,77; 1,35	0,83; 1,88	0,55; 1,04
0,64; 1,25 0,90; 1,62 0,62; 0,86 0,72; 1,20 0,96; 1,56 0,67; 0,83 0,74; 1,20 1,00; 1,56 0,69; 0,80 0,77; 1,16 1,08; 1,50 0,74; 0,77 0,80; 1,16 1,12; 1,45 - 0,93; 1,25 1,08; 1,74 0,64; 1,0 1,00; 1,20 1,16; 1,68 0,69; 0,9 1,04; 1,16 1,20; 1,68 0,74; 0,9 1,08; 1,12 1,25; 1,62 0,77; 0,9 0,83; 1,12 1,16; 1,45 - 0,90; 1,08 1,20; 1,40 - 0,93; 1,04 1,25; 1,35 - 1,40; 1,50 - 0,72; 1,45 2,10 0,51; 1,1 - 1,30; 1,30 - 1,45 0,53; 1,35 0,77; 1,74 0,47; 1,00 0,55; 1,35 0,80; 1,74 0,53; 0,96 0,62; 1,30 0,90; 1,68 0,55; 0,96		0,51; 1,30	0,77; 1,68	0,53; 0,93			0,80; 1,35	0,93; 1,81	0,59; 1,04
0,72; 1,20 0,96; 1,56 0,67; 0,83 0,74; 1,20 1,00; 1,56 0,69; 0,80 0,77; 1,16 1,08; 1,50 0,74; 0,77 0,80; 1,16 1,12; 1,45 — 0,90; 1,08 1,20; 1,40 — 0,93; 1,04 1,25; 1,35 — 1,45 0,53; 1,35 0,77; 1,74 0,55; 1,35 0,80; 1,74 0,53; 0,96 0,62; 1,30 0,90; 1,68 0,55; 0,96		0,62; 1,25	0,86; 1,62	0,57; 0,90			0,86; 1,30	0,96; 1,81	0,62; 1,00
0,74; 1,20 1,00; 1,56 0,69; 0,80 0,77; 1,16 1,08; 1,50 0,74; 0,77 0,80; 1,16 1,12; 1,45 - 0,83; 1,12 1,16; 1,45 - 0,90; 1,08 1,20; 1,40 - 0,93; 1,04 1,25; 1,35 - 1,45 0,53; 1,35 0,77; 1,74 0,47; 1,00 0,55; 1,35 0,80; 1,74 0,53; 0,96 0,62; 1,30 0,90; 1,68 0,55; 0,96		0,64; 1,25	0,90; 1,62	0,62; 0,86			0,93; 1,25	1,08; 1,74	0,64; 1,00
0.77; 1,16 1,08; 1,50 0,74; 0,77 0,80; 1,16 1,12; 1,45 - 0,83; 1,12 1,16; 1,45 - 0,90; 1,08 1,20; 1,40 - 0,93; 1,04 1,25; 1,35 - 1,45 0,53; 1,35 0,77; 1,74 0,55; 1,35 0,80; 1,74 0,53; 0,96 0,62; 1,30 0,90; 1,68 0,55; 0,96		0,72; 1,20	0,96; 1,56	0,67; 0,83			1,00; 1,20	1,16; 1,68	0,69; 0,96
0,80; 1,16 1,12; 1,45 - - 1,35; 1,56 0,83; 0,8 0,83; 1,12 1,16; 1,45 - - 1,40; 1,50 - 0,90; 1,08 1,20; 1,40 - - 1,45; 1,45 - 0,93; 1,04 1,25; 1,35 - 1,62 0,72; 1,45 2,10 0,51; 1,1 - 1,30; 1,30 - 0,74; 1,45 0,83; 1,95 0,53; 1,1 1,45 0,53; 1,35 0,77; 1,74 0,47; 1,00 0,80; 1,40 0,86; 1,95 0,59; 1,0 0,55; 1,35 0,80; 1,74 0,53; 0,96 0,83; 1,40 1,00; 1,88 0,67; 1,0 0,62; 1,30 0,90; 1,68 0,55; 0,96 0,90; 1,35 1,12; 1,81 0,72; 1,0		0,74; 1,20	1,00; 1,56	0,69; 0,80		i	1,04; 1,16	1,20; 1,68	0,74; 0,93
0,83; 1,12 1,16; 1,45 — — 1,40; 1,50 — 0,90; 1,08 1,20; 1,40 — — 1,45; 1,45 — 0,93; 1,04 1,25; 1,35 — — 1,62 0,72; 1,45 2,10 0,51; 1,1 — 1,30; 1,30 — 0,74; 1,45 0,83; 1,95 0,53; 1,1 1,45 0,53; 1,35 0,77; 1,74 0,47; 1,00 0,80; 1,40 0,86; 1,95 0,59; 1,0 0,55; 1,35 0,80; 1,74 0,53; 0,96 0,83; 1,40 1,00; 1,88 0,67; 1,0 0,62; 1,30 0,90; 1,68 0,55; 0,96 0,90; 1,35 1,12; 1,81 0,72; 1,0		0,77; 1,16	1,08; 1,50	0,74; 0,77			1,08; 1,12	1,25; 1,62	0,77; 0,90
0,90; 1,08 1,20; 1,40 - 1,45; 1,45 - 0,93; 1,04 1,25; 1,35 - 1,62 0,72; 1,45 2,10 0,51; 1,1 - 1,30; 1,30 - 0,74; 1,45 0,83; 1,95 0,53; 1,1 1,45 0,53; 1,35 0,77; 1,74 0,47; 1,00 0,55; 1,35 0,80; 1,74 0,53; 0,96 0,62; 1,30 0,90; 1,68 0,55; 0,96		0,80; 1,16	1,12; 1,45	-			_	1,35; 1,56	0,83; 0,83
0.93; 1,04 1,25; 1,35 - 1,30; 1,30 - 1,45 0.53; 1,35 0,77; 1,74 0,47; 1,00 0,55; 1,35 0,80; 1,74 0,53; 0,96 0,62; 1,30 0,90; 1,68 0,55; 0,96		0,83; 1,12	1,16; 1,45	-			-	1,40; 1,50	-
- 1,30; 1,30 - 1,45 0,53; 1,35 0,77; 1,74 0,47; 1,00 0,55; 1,35 0,80; 1,74 0,53; 0,96 0,62; 1,30 0,90; 1,68 0,55; 0,96		0,90; 1,08	1,20; 1,40	-			_	1,45; 1,45	! -
1,45 0,53; 1,35 0,77; 1,74 0,47; 1,00 0,55; 1,35 0,80; 1,74 0,53; 0,96 0,62; 1,30 0,90; 1,68 0,55; 0,96		0,93; 1,04	1,25; 1,35	-		1,62	0,72; 1,45	2,10	0,51; 1,12
0,55; 1,35 0,80; 1,74 0,53; 0,96 0,62; 1,30 0,90; 1,68 0,55; 0,96 0,90; 1,35 1,12; 1,81 0,72; 1,0		_	1,30; 1,30	-			0,74; 1,45	0,83; 1,95	0,53; 1,12
0,62; 1,30 0,90; 1,68 0,55; 0,96 0,90; 1,35 1,12; 1,81 0,72; 1,0	1,45	0,53; 1,35	0,77; 1,74	0,47; 1,00			0,80; 1,40	0,86; 1,95	0,59; 1,08
		0,55; 1,35	0,80; 1,74	0,53; 0,96			0,83; 1,40	1,00; 1,88	0,67; 1,04
0,64; 1,30 0,93; 1,68 0,59; 0,93 0,96; 1,30 1,25; 1,74 0,77; 0,9		0,62; 1,30	0,90; 1,68	0,55; 0,96			0,90; 1,35	1,12; 1,81	0,72; 1,00
		0,64; 1,30	0,93; 1,68	0,59; 0,93			0,96; 1,30	1,25; 1,74	0,77; 0,96
0,72; 1,25 1,00; 1,62 · 0,64; 0,90 1,04; 1,25 1,30; 1,68 0,80; 0,9		0,72; 1,25	1,00; 1,62 ·	0,64; 0,90			1,04; 1,25	1,30; 1,68	0,80; 0,93

	,	1	
d	đ1; d2	d ₃ ; d ₄	d ₅ ; d ₆
1,62	1,08; 1,20	1,40; 1,62	-
	1,12; 1,16	1,50; 1,50	_
1,68	0,74; 1,50	0,86; 2,02	0,44; 1,20
	0, 7 7; 1,50	0,90; 2,02	0,53; 1,16
	0,83; 1,45	1,04; 1,95	0,55; 1,16
	0,86; 1,45	1,08; 1,95	0,62; 1,12
	0,93; 1,40	1,16; 1,88	0,69; 1,08
	1,00; 1,35	1,25; 1,81	0,74; 1,04
	1,08; 1,30	1,30; 1,81	0,80; 1,00
	1,12; 1,25	1,35; 1,74	0,83; 0,96
	1, 16; 1,20	1,45; 1,68	0,90; 0,90
	_	1,50; 1,62	
	-	1,56; 1,156	-
1,74	0,77; 1,56	2,26	0,55; 1,20
	0,80; 1,56	0,90; 2,10	0,57; 1,20
	0,86; 1,50	0,93; 2,10	0,62; 1,16
	0,90; 1,50	1,08; 2,02	0,64; 1,16
	0,96; 1.45	1,20; 1,95	0,69; 1,12
	1,04; 1,40	1,30; 1,88	0,72; 1,12
	1,08; 1,35	1,40; 1,81	0,77; 1,08
	1,12; 1,35	1,50; 1,74	0,83; 1,04
	1,16; 1,30	1,62; 1,62	0,86; 1,00
	1,25; 1,20	-	0,90; 0,96
1,81	0,77; 1,62	1,25; 2,02	0,55; 1,25
Ì	0,80; 1,62	1,30; 2,02	0,57; 1,25
	0,83; 1,62	1,35; 1,95	0,67; 1,20
	0,90; 1,56	1,40; 1,95	0,69; 1,20
	0,93; 1,56	1,45; 1,88	0,72; 1,16
	1,00; 1,50	1,56; 1,81	0,74; 1,16
	1,08; 1,45	1,62; 1,74	0,80; 1,12
	1,16; 1,40	1,68; 1,68	0,86; 1,08
	1,20; 1,35	-	0,90; 1,04
	1,25; 1,30	-	0,93; 1,00
1,88	0,83; 1,68	-	0,57; 1,30
i	0,86; 1,68	-	0,59; 1,30
	0,93; 1,62	-	0,67; 1,25
	0,96; 1,62	_	0,69; 1,25
~			

	1		
d	d1; d2	d ₃ ; d ₄	d5; d6
1,88	1,04; 1,56	_	0,77; 1,20
	1,12; 1,50	-	0,83; 1,16
	1,16; 1,50	_	0,90; 1,12
l	1,20; 1,45	_	0,93; 1,08
	1,25; 1,40	-	-
	1,30; 1,35	_	-
1,95	0,86; 1,74	-	0,59; 1,35
	0,90; 1,74	-	0,62; 1,35
	0,96; 1,68		0,69; 1,30
	1,00; 1,68	-	0,72; 1,30
	1,08; 1,62	-	0,80; 1,25
l	1,16; 1,56	_	0,86; 1,20
	1,20; 1,56		0,93; 1,16
ı	1,25; 1,50	_	0,96; 1,12
	1,30; 1,45	_	1,00; 1,08
	1,35; 1,40	-	1,04; 1,04
2,02	0,86; 1,81	_	0,62; 1,40
	0,90; 1,81	_	0,64; 1,40
	1,00; 1,74		0,72; 1,35
	1,04; 1,74	-	0,74; 1,35
	1,12; 1,68		0,80; 1,30
ı	1,20; 1,62	_	0,83; 1,30
	1,30; 1,56	-	0,90; 1,25
	1,35; 1,50		0,96; 1,20
	1,40; 1,45	<u> </u>	1,00; 1,16
	_	_	1,04; 1,12
	-	_	1,08; 1,08
2,10	0,90; 1,88		0,64; 1,45
	0,93; 1,88	_	0,67; 1,45
	1,08; 1,81	_	0,77; 1,40
	1,12; 1,81	_	0,83; 1,35
	1,16; 1,74	_	0,86; 1,35
	1,20; 1,74	_	0,93; 1,30
	1,25; 1,68	-	1,00; 1,25
	1,35; 1,62	-	1,04; 1,20
	1,40; 1,56	-	1,08; 1,16
	1,45; 1,50		1,12; 1,12

6. Ремонт асинхронных электродвигателей

6.1. Технологический процесс ремонта электродвигателей

В объем ремонта асинхронных электродвигателей входит выполнение следующих основных работ: замена обмоток, исправление валов (устранение биения), смена подшипников, замена и проточка контактных колец, мелкие слесарные работы и окраска.

Схема технологического процесса ремонта асинхронных электродвигателей представлена на рис. 6.1. В приведенных технологических операциях дан полный перечень работ и порядок их выполнения, указаны необходимые материалы, инструмент и оборудование.

Таблица 6.1. Маршрутная технология ремонта асинхронных электродвигателей

	тохнолосия рошонина асанхр	, , , , , , , , , , , , , , , , , , ,
Наименование операции	Оборудование	Проверяемые показатели
Внешний осмотр и предремонтная проверка электродвигателей (опера- ция № 1)	Стенд для проверки электрических параметров; аппарат ЕЛ- 1; мегомметры на 1000 и 500 В	1. Состояние электродвигателя 2. Целостность фаз. 3. Сопротивление изоляции обмоток не менее 0,5 мОм. 4. Испытание на пробой: 500 В + дву-кратное номинальное напряжение. 5.Обнаружение короткозамкнутых вит-ков
Разборка электродвигателя (опера- ция № 2)	Стенд для разборки	_
Съем, проверка, хранение и напрессовка подшипников (операция № 3)	Пресс ручной ПЗП; съемники; щипцы или метаплические крючки; латунная конусная оправка	
Выемка обмоток (операция № 4)	Тупиковая электропечь; приспособление для выемки обмоток; токарный станок для подрезки лобовых частей	Температура нагрева 250300 °C
Мойка деталей электродвигателя, кроме ротора и статора (операция № 5)	Ванна промывная; камера обдува	3-процентный раствор кальцинирован- ной соды при температуре 8090 °C; ротор и статор обдуть
Определение дефектов в деталях электродвигателя (операция № 6)	Стенд для проверки биения; плита поверочная 1000х1500 мм;	Биение не более 0,05 мм

омметр

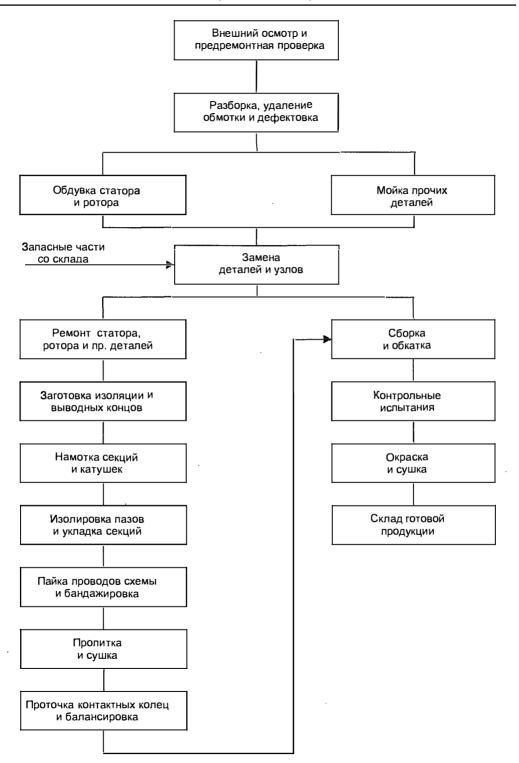


Рис. 6.1. Технологическая схема ремонта асинхронных электродвигателей

Продолжение табл. 6.1

Наименование операции	Оборудование	Основные параметры
Ремонт корпуса статора и подшипни- ковых щитов (операция № 7)	Термостат Ш-0,05	Температура сушки 150 °C в течение 0,51,0 часа
Ремонт ротора (операция № 8)	Термостат Ш-0,05; стенд для проверки биения шейки вала	Биение шеек вала не более 0,02 мм; биение свободного конца вала не более 0,05 мм
Заготовка пазовой изоляции (операция № 9)	Картонорубильный станок КН-1; приспособление для формовки па- зовых коробочек	_
Изготовление выводных концов (one- рация № 10)	Ванна для пайки и лужения; зачистная машина	Припой ПОС-40 с температурой плавления 235 °C
Намотка секций обмоток статора (операция № 12)	Намоточный станок	_
Укладка обмоток статора и бандажировка (операция № 13)	Пресс гидравлический ПГ-1; стенд для проверки обмотки	_
Пропитка и сушка статорных обмоток (операция № 14)	Вакуумпропиточная установка; печь сушильная камерная с регу- лируемым обменом воздуха	1. Предварительная сушка обмоток при температуре 80100 °C в течение 2 часов; 2. Окончательная сушка при температуре 80100 °C в течение 2 часов при разряжении 720740 мм рт. ст.; 3. Пропитка при температуре 6070 °C в течение 510 мин. 4. Поднять давление до 34 атм., выдержать 35 мин.
Балансировка фазного ротора	Машина для динамической балан- сировки; вертикально-сверлильный станок	
Сборка электродвигателя	Пресс ручной; стенд для сборки	_
Контрольные испытания электродвигателя	Пробойная установка; стенд для проверки параметров	Проверка на пробой при напряжении 500 В + двукратное номинальное напряжение
Окраска электродвигателя	Камера окрасочная; печь сушильная	Толщина слоя 0,003 мм; сушка при температуре 80 °C в течение

6.2. Работы по разборке электродвигателей и определению дефектов

1,5 часа

Технологическая операция № 1 — проведение предремонтной проверки асинхронных электродвигателей.

Оборудование, приборы, инструменты. Стенд для проверки электрических параметров; ампервольтметр; осциллограф ЕЛ-1; мегомметр на 500 и 1000 В; ручной тахометр.

Проведение испытаний

- 1. Осмотреть электродвигатель. Ознакомиться с дефектами и состоянием изоляции.
 - 2. Подготовить электродвигатель для включения в сеть. Для этого надо:
 - убедиться в •тсутствии механических дефектов, препятствующих запуску электродвигателя (поломка вала, подшипниковых щитов, подшипников, задевание ротора за статор и т. п.);
 - проверить целостность обмоток на обрыв, а также состояние выводных концов и клеммника;
 - замерить мегомметром на 1000 В сопротивление изоляции обмоток;
 - испытать электрическую прочность корпусной изоляции;
 - проверить электрическую прочность витковой изоляции аппаратом ЕЛ-1.
- 3. При удовлетворительных результатах проверок и испытаний электродвигатель включить под номинальное напряжение.
- 4. Все величины замеров и результаты испытаний, а также заключение по результатам испытаний записываются в ведомость дефектов.

Технологическая операция № 2 — разборка асинхронных электродвигателей.

Оборудование, приспособления, инструменты: •твертки A150х0,5; комплект төрцөвых ключей; көмплект рөжкөвых ключей; съемники для съема подшипников, вентилятора и подшипниковых щитов; зубило слесарное, ширина рабочей части 10 мм; молоток слесарный типа Б № 3; молоток алюминиевый; плоскогубцы; электропаяльник 90 Вт; щуп № 2.

Подготовительные работы

- 1. Продуть электродвигатель от пыли сжатым воздухом в обдувочной камере.
- 2. Подготовить комплектовочный ящик (укрепив на нем бирку с ремонтным номером электродвигателя, подлежащего разборке). В процессе разборки в этот ящик складывать все детали и крепеж электродвигателя.

Разборка электродвигателя

- 1. Установить электродвигатель на верстак.
- 2. Отвернуть винты, крепящие кожух вентилятора, и снять его. Снять съемником вентилятор с вала.
 - 3. Отс•единить выв•дные к•нцы.
 - 4. Снять клеммник и борно.
- 5. Отвернуть винты, крепящие крышки подшипников, и снять их (на старых моделях электродвигателей).
 - 6. Отвернуть болты, крепящие подшипниковые щиты к статору.
 - 7. Снять задний подшипниковый щит.
- 8. Вывести передний подшипниковый щит из проточки статора, не допуская при этом ударов ротора о статор.
- 9. Снять передний подшипниковый щит вместе с ротором и осторожно вывести ротор из расточки статора, не допуская задевания ротора за обмотки статора.
 - 10. Снять щит с ротора и выпрессовать подшипники.
 - 11. Передать ротор и статор на обдувку, а остальные детали в мойку.

Технологическая операция № 3 — съем, пр•верка, хранение и напрессевка подшипник•в

Оборудование, приспособления, инструменты: пресс ручной ПЗП; съемники; щипцы или металлические крючки; латунная конусная оправка.

Промывка, консервация и контроль подшипников (неисправные подшипники не ремонтируются, они подлежат замене на новые).

- 1. Промыть подшипники в промывочной ванне (операция № 5). Окончательную промывку демонтированных подшипников производят в керосине с добавкой 3...5~% (по объему) индустриального масла или заменяющего его для предотвращения сухого трения при проверке на легкость хода.
- 2. Легкость хода подшипника проверяется в горизонтальном положении, насадив подшипник внутренним кольцом на конусную латунную оправку.
- 3. Расконсервированные новые подшипники, так же как и демонтированные, необходимо предохранить от коррозии. При осмотрах, проверках и монтаже не допускается трогать рабочие поверхности подшипника руками, так как это вызывает появление точечной коррозии.
- 4. При недлительном хранении промытые подшипники укладывают в железные банки и заливают минеральным маслом.

Съем и напрессовка подшипников

- 1. При снятии и напрессовке подшипников усилие должно передаваться только на внутреннее кольцо. При снятии это достигается подбором сменных планок (рис. 6.2).
- 2. При наличии защитней шайбы, кетерая епирается тельке на внутреннее кольцо подшипника, демонтаж преизведят, прикладывая усилие съемника к ней.
- 3. Монтаж подшипников производят на чистом рабочем месте, чистым исправным инструментом, с соблюдением всех мер предосторожности против по-

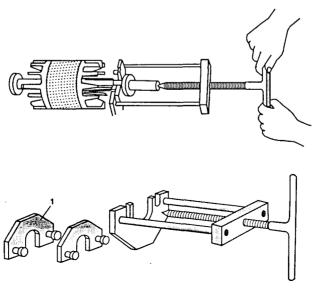


Рис. 6.2. Снятие подшипников с вала ротора

падания в подшипник грязи, металлических или абразивных частиц. Запрещается оставлять смонтированные подшипники открытыми.

- 4. Монтаж подшипников на шейки вала производят соответственно подобранной оправкой на специальном ручном прессе ПЗП.
- 5. Посадка подшипников должна обеспечивать непроворачиваемость внутреннего кольца на шейках вала и возможность осевого перемещения в гнездах подшипникового щита.
- 6. Перед монтажом подшипника нужно внимательно осмотреть посадочное место, состояние упорного заплечика и галтели на шейке вала и в гнездах подшипникового щита. Необходимо обратить внимание на то, чтобы на поверхностях не было забоин, царапин и вспучивания металла, чтобы плоскость заплечика была перпендикулярна шейке, а радиус галтели соответствовал фаске кольца. В противном случае нельзя обеспечить правильную установку подшипника на шейку. Правильность установки определяется по равномерному прилеганию кольца к заплечику, проверяемому обычно по величине просвета.
- 7. После запрессовки не должно быть местных заеданий и притормаживаний.

Смазка подшипников

- 1. Работоспособность подшипников зависит от первоначально произведенной при сборке смазки, так как конструкции многих электродвигателей не предусматривают смазку их в эксплуатации.
- 2. Подшипники в электродвигателях смазывают консистентной смазкой, заполнив ею 1/3 объема подшипниковой камеры. Характеристики смазок применяемых для подшипников электродвигателей, приведены в табл. 6.2.

Наименование и марка Допустимая рабочая тем-Область применения и особенности смазки смазки пература, °С Консистентная смазка От +120 до -60 Не допускается использовать смазку при температурах ЦИАТИМ-201 100...120 °С в условиях повышенной впажности Консистентная смазка От +120 до ~60 Дпя смазки электродвигателей с высокими скоростями вра-ЦИАТИМ-202 щения ротора. По свойствам сходна со смазкой ЦИАТИМ-201 $O_T + 150 до -60$ Для смазки электродвигателей с высокой рабочей темпера-Консистентная смазка ЦИАТИМ-221 Для работы в некоторых агрессивных средах.

Таблица 6.2. Применяемые е электродвигателях смазки

Технологическая операция № 4 — выемка обмоток из статора и фазного ротора.

Оборудование, приспособления, инструменты: установка для выемки обмотки; тупиковая электропечь; приспособление для обрезки лобовых частей обмотки статора на токарном станке; резец специальный с оправкой; зубило слесарное, ширина рабочей части 10...15 мм; молоток типа Б-3; скребки для чистки пазов стальные; приспособление для подрезки лобовых частей фазного ротора.

Выемка обмоток

1. Установить статор (ротор) на токарный станок.

- 2. Обрезать лобовую часть обмотки статора (ротора) со стороны соединения катушек.
- 3. Разогреть изоляцию обмоток статора (ротора) в тупиковой электропечи при температуре 250...300 °C в течение 30...40 мин (при загрузке и выкатке тележки из электропечи нагреватели должны быть отключены, а местный отсос включен).
- 4. При остывании статора (ротора) до температуры 80...90 °C установить держатель активной стали и удалить по частям обмотку из пазов на установке для выемки обмоток.
 - 5. Снять держатель активной стали.
- 6. Очистить пазы скребками от остатков старой изоляции. Направить статор (ротор) на продувку.

Технологическая операция № 5 — мойка деталей электродвигателей.

Оборудование, приспособления, инструменты: корзина загрузочная, весы, термометр.

Подготовительные работы

Приготовить 3-процентный раствор кальцинированной соды. Для этого предварительно из ванны сливают старый раствор и, промыв ванну горячей водой, ее заливают свежей водой, которую подогревают до 50...60 °C. Отвесив необходимое количество кальцинированной соды (из расчета 300 г на 10 л воды), ее растворяют в ванне с подогретой водой.

Соду загружают в ванну небольшими порциями, перемешивая при этом воду и не допуская образования брызг. Подогрев полученный раствор до 80...90 °C, открывают вентиль пневмосистемы и пускают воздух в ванну для образования бурления.

Мойка деталей электродвигателя

- 1. Загрузить в корзину детали электродвигателя.
- 2. Поместить корзину на 10...15 мин в ванну с 3-процентным раствором кальцинированной соды для промывки деталей.
- 3. Поднять корзину из ванны с раствором кальцинированной соды и поместить на 3...5 мин в ванну с проточной горячей водой для нейтрализации соды.
 - 4. Обдуть детали сжатым воздухом и передать для определения дефектов.

Технологическая операция № 6 — определение дефектов в асинхронных электродвигателях.

ных электродвигателях. Оборудование, приспособления, инструменты: линейки стальные, 500 мм и 150 мм; штангенциркуль 150 мм; микрометр 0...25 мм; стенд для проверки

биения с индикатором часового типа; стойка индикаторная. Определение дефектов

- 1. Проверить (осмотреть) состояние пакета активной стали ротора и статора. Не допускается:
 - нарушение плотности шихтовки;
 - распушение крайних листов;
 - сдвиг отдельных листов;
 - коррозия и смещение пакета на валу или в корпусе.

- 2. Преверить (есметрем) на етсутствие трещин, еткелев и задирев корпуса и центрирующих затечек, а также преверить исправнесть резьбы. Обратить при этем внимание на плетнесть песадки педшипникевых щитев.
- 3. Проверить целостность клеммника, исправность резьбы, наличие гаек и шайб, целостность изолирующих деталей и наличие крышки борно.
- 4. Проверить подшипниковые щиты и крышки, отсутствие трещин, отколов и короблений, а также состояние и размеры посадочных поверхностей и исправность резыбы болтов и шпилек.
- 5. Проверить целостность и легкость хода подшипников, состояние беговых дорожек, элементов качения и колец (у исправных подшипников при покачивании наружного кольца относительно внутреннего зазор не ощущается, у изношенных подшипников наружное кольцо сдвигается в радиальном направлении).
- 6. Проверить состояние посадочных поверхностей вала, шпоночной канавки. В случае занижения размеров шеек вал бракуют.
- 7. Проверить прочность посадки вентилятора на валу, внешнее состояние лопаток, корпуса и втулки.
 - 8. Проверить состояние контактных колец фазного ротора.
 - 9. Проверить состояние щеточного устройства и щеток.

6.3. Ремонт деталей и узлов электродвигателя

Технологическая операция № 7 — ремент көрпусөв, статерев и педшипникевых шитев.

Оборудование, приспособления, инструменты: керн; молоток А 200; метчики; шаберы; напильники; зубило; кисть; сверла; термостат Ш-0,05; струбцины. Ремонт

Типичными повреждениями корпусов и пакетов активной стали статоров являются:

- повреждение лакокрасочного покрытия и коррозия;
- заб•ины и вмятины;
- •тламывание и выпадение •тдельных зубц•в на листах стали стат•ра при снятии •бм•тки;
- срыв резьбы в •тверстиях для б•лт•в, крепящих п•дшипник•вые щиты.
- 1. Очистить пакеты от пыли сжатым воздухом или мягкой волосяной щеткой и снова покрыть антикоррозионным лаком, предварительно удалив со всей поверхности антикоррозионное покрытие и коррозию при механическом повреждении антикоррозионного лакового покрытия, а также при наличии коррозии на наружной поверхности корпусов или статоров, в которых пакет железа одновременно служит и корпусом, со всей поверхности удалить антикоррозионное покрытие и коррозию.
 - 2. Выбраковать статоры, в которых коррозия проникла между пластинами.
- 3. При наличии на корпусе вмятин и забоин сборку электродвигателя производить без устранения этих повреждений только в тех случаях, если они не вызвали изменения размеров активной стали статора по внутреннему диаметру

или размера посадочных замков или внутреннего диаметра статора. В противном случае производят зачистку выпуклых мест или забоин шабером до соответствующего размера и покрывают антикоррозионным лаком.

- 4. При срыве резьбы в отверстиях корпусов под болты, крепящие щиты, производят рассверловку отверстий и нарезание резьбы большего размера, при этом в подшипниковом щите также рассверливается отверстие на больший размер.
- 5. Нарезать резьбу в силуминовых и алюминиевых корпусах только вторым метчиком. При нарезке тремя метчиками резьба будет слабой.
 - 6. Отслоившиеся листы пакета склеить клеем БФ-2.
- 7. Очистить бензином от грязи, пыли, коррозии и следов жира склеиваемые поверхности перед нанесением клея.
 - 8. Клей на подготовленные поверхности нанести кистью.
 - 9. Покрывать поверхность клеем БФ-2 в два приема.
- 10. Подсушку после 1-го покрытия при комнатной температуре вести в течение 1 часа. После второго покрытия подсушку вести при 55...60 °C в течение 15 мин.
- 11. Склеиваемые листы после подсушивания плотно прижать к пакету при помощи струбцин, обеспечив давление на склеиваемые поверхности порядка $50...150~{
 m H/cm^2}$.
 - 12. Сушить клеевой шов при температуре 150 °C в течение 0,5...1 часа.
- 13. Если в процессе разборки или удаления обмотки на последних листах отломились зубцы, то удалить эти листы из пакета.
 - 14. При смещении пакета железа в корпусе запрессовать пакет на место.

Технологическая операция № 8 — ремонт роторов.

Oборудование, приспособления, инструменты: стенд для проверки биения; стойка индикаторная; индикатор; кисть; призмы.

Ремонт

К основным неисправностям роторов, влияющих на работу электродвигателей, относятся:

- увеличение биения выступающих концов вала;
- коррозия на пакетах и валах;
- отслоение листов пакета.
- 1. Рихтовку валов производят на разобранном электродвигателе.
- 2. Установить призмы на разметочную плиту и установить на них ротор.
- 3. Проверить биение концов вала индикатором, закрепленным в стойке, и отметить точку максимального отклонения стрелки индикатора. Осторожно ударяя неметаллическим молотком по концу вала, в точке, противоположной точке максимального отклонения стрелки индикатора, выравнивают вал.
- 4. Ликвидировать коррозию и подклеить отслоившиеся листы фазного ротора в соответствии с технологической операцией № 7.
- 5. Выпрессовать сердечник с вала при помощи оправки на прессе при ослаблении посадки сердечника на вал.
- 6. Накатать на валу на токарном станке продольно-посадочную поверхность под сердечник, обеспечив прессовую посадку.
 - 7. Запрессовать сердечник, обеспечив свободное вращение.

6.4. Обмоточно-изоляционные работы

Технологическая операция № 9 — заготовка изоляции для асинхронных электродвигателей.

Оборудование, приспособления, инструменты: ручные рычажные ножницы; штангенциркуль 150 мм; нож; ножницы портняжные; приспособление для формовки пазовых коробочек.

Заготовка изоляции

- 1. Определить размеры заготовок пазовой коробочки по размерам паза электродвигателя.
- 2. Отрезать рычажными ножницами заготовку для одной пробной пазовой коробочки.
 - 3. Отформовать на приспособлении пазовую коробочку.
- 4. Усилить выступающую часть пазовой коробочки, обеспечив размер вылета пазовой коробочки. Внешний вид пазовой коробочки с манжетой для усиления показан на рис. 6.3. Ширина манжеты должна быть 8...20 мм (в зависимости от типоразмера электродвигателя).
- 5. Заложить для контроля пазовую коробочку в паз и уточнить размеры заготовок. Расположение пазовой коробочки в пазу показано на рис. 6.4, а длина вылета приведена в табл. 6.3.

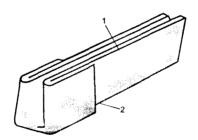


Рис. 6.3. Внешний вид пазовой коробочки с манжетой для усиления: 1 — пазовая коробочка, 2 — отогнутая манжета

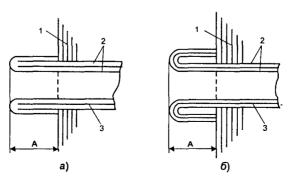


Рис. 6.4. Расположение пазовой коробочки в пазу и вылет манжеты: a — манжета, образованная внутренним слоем пазовой коробочки, δ — манжета, образованная тремя слоями пазовой коробочки; 1 — пакет железа, 2 — электрокартон, 3 — внутренний слой лакоткани или миканита

Таблица 6.3. Примерная длина вылета пазовой коробочки из паза для электродвигателей разной мощности

Мощность электродвигателя	кВт При двухслойной манжете (рис. 6.4a)	Длина вылета пазовой коробочки, мм При трехслойной манжете (рис. 6.46)
До 5	10	8
От 5 до 40	15	12
От 40 до 100	20	15

- 6. Отрезать рычажными ножницами полосы изоляционного материала шириной, равной длине заготовки.
- 7. Нарезать из этих полос рычажными ножницами заготовки по развернутой ширине пазовой коробочки.
 - 8. Отформовать заготовки и скомплектовать пазовые коробочки.
- 9. Определить по электродвигателю размеры междуслойных прокладок в пазу и междуфазовых прокладок в лобовой части.
- 10. Заготовить по одной пробной прокладке и уточнить их размеры по электродвигателю.
- 11. По уточненным размерам заготовить аналогично пунктам 6 и 7 комплект междуслойных прокладок в пазу и комплект междуфазовых в лобовых частях.
- 12. Определить после укладки первой катушки необходимость уплотнения обмотки путем установки прокладок под клин.

Технологическая операция № 10 — изготовление выводных проводов. *Оборудование, приспособления, инструменты*: круглогубцы специальные; паяльник; ванна для пайки; линейка масштабная; штангенциркуль; ножницы для

резки провода; щипцы или клещи для снятия изоляции.

Изготовление выводных проводов:

- 1. Выбрать провод необходимого сечения.
- 2. Разрезать по длине на куски необходимой длины.
- 3. После резки зачистить концы проводов от изоляции, удалить оксидную пленку, скрутить жилы и облудить.
- 4. Длина зачистки провода от изоляции должна обеспечивать надежность закрепления и пайки или сварки. Обычно длина зачистки не превышает 10—20 мм. Зачищать провод от изоляции ножом не допускается во избежание подрезания токопроводящей жилы провода. Для удаления изоляции применяют специальные щипцы и приспособления (клещи), рис. 6.5.
- 5. Провода с волокнистой изоляцией требуют закрепления концов изоляции, которое производят электроизоляционными трубками. Одновременно с заделкой концов производят маркировку проводов.
 - 6. Перед заделкой концов многожильных проводов жилы скрутить.
- 7. Специальными круглогубцами свернуть кольцо для крепления на клеммнике.
- 8. Зачищенные и скрученные концы выводов подвергнуть горячему лужению. Для этого концы проводов погрузить на 1-2 с в электрованну с расплав-

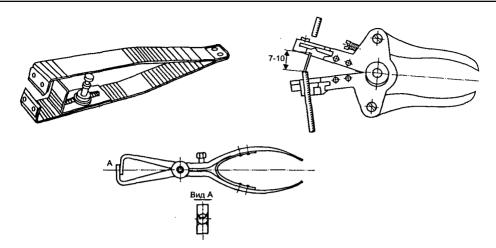


Рис. 6.5. Инструмент для удаления изоляции с выводных концов

ленным припоем ПОС-40, предварительно покрыв место лужения спиртовым раствором канифоли.

Технологическая операция № 11 — зачистка концов провода с винифлексовой изоляцией в муравьиной кислоте (данная операция является частью операций № 10 и № 13).

Оборудование, приспособления, инструменты: защитные очки; резиновые перчатки; песочные часы на 10 мин; стеклянная ванна; вытяжной шкаф.

Подготовка к травлению

- 1. Надеть защитные очки и перчатки.
- 2. Заполнить стеклянную ванну на 3/4 объема муравьиной кислотой.
- 3. Долить ванну защитным слоем керосина толщиной 10...15 мм.
- 4. Приготовить 3-процентный раствор кальцинированной соды на 1 л воды 30 г кальцинированной соды. При попадании кислоты на стол его необходимо промыть 3-процентным раствором кальцинированной соды, а затем водой. При промывке и очистке от эмали держать провода концами вниз, чтобы не было затеков кислоты и воды.

Травление кислотой

- 1. Выправить концы провода и разъединить параллельные провода.
- 2. На одном изделии определить опытным путем высоту поднятия призмы на штативе.
- 3. Подвесить изделие на призму и плавно опустить концы в ванну с муравьиной кислотой.
 - 4. Выдержать концы в ванне в течение 5...10 мин (до вспучивания пленки).
 - 5. Плавно поднять призму с изделием.
- 6. Перенести протравленное изделие в промывочную ванну с проточной водой. Площадь стола вытяжного шкафа от травильной ванны до промывочной ванны рекомендуется посыпать кальцинированной содой для нейтрализации натеков муравьиной кислоты.
 - 7. Выдержать изделие в проточной воде не менее 10...12 мин.

8. Очистить набухшую эмаль ветошью, тщательно промыть концы проводов в проточной воде и насухо протереть ветошью.

Технологическая операция № 12 — намотка секций и катушек.

Оборудование, приспособления, инструменты: приспособление для шаблонировки катушек; намоточный станок; шаблон для намотки; штангенциркуль; линейка 300 мм; ножницы портняжные; омметр.

Намотка статорных секций

1. Закрепить шаблон на станке (на рис. 6.6 показан ручной станок) для намотки катушек. Закрепить провод на первой ступеньке шаблона и намотать вручную начало катушки.

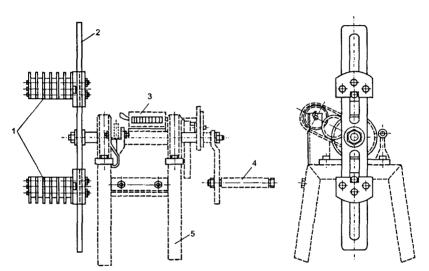


Рис. 6.6. Станок для ручной намотки катушек с раздвижным шаблоном: 1 — колодка шаблона; 2 — диск; 3 — счетчик оборотов; 4 — рукоятка; 5 — станина

- 2. Намотать катушку.
- 3. Сделать переход на другую ступень шаблона.
- 4. Намотать катушку. Данные операции повторить до завершения намотки секции.
- 5. Перевязать каждую катушку в двух местах по разъему шаблона отходами провода. В случае обрыва провода допускается одна пайка на шаблон с выводом ее на лобовую часть с изоляцией хлорвиниловой трубкой.
- 6. Снять шаблон с катушкой со станка, вынуть катушку, перевязать ее в одном месте и уложить в тару.
 - 7. Замерить сопротивление и проверить вес катушки.

Технологическая операция № 13 — укладка обмоток статора асинхронных электродвигателей.

Оборудование, приспособления, инструменты: подставка для укладки; инструмент обмотчика (рис. 6.7); плоскогубцы; молоток; молоток резиновый; ножницы портняжные; пресс гидравлический ПГ-1; паяльник; игла специальная

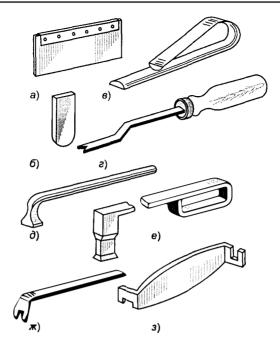


Рис. 6.7. Набор инструмента обмотчика: a — фибровая пластинка; δ — фибровый язык; s — обратный клин; e — угловой нож; d — выколотка; e — топорик; m и g — ключи для гибки роторных стержней

для бандажировки; приспособление-шаблон для правки лобовых частей; аппарат ЕЛ-1; пинцет; сварочный трансформатор 0,5 кВт, 13 В; мегомметр.

Подготовка статора к укладке

- 1. Продуть статор сжатым воздухом. Тщательно проверить состояние пазов; при обнаружении заусениц произвести их опиловку.
- 2. Заложить в пазы электродвигателя пазовые коробочки, обеспечив их одинаковые вылеты.
- 3. Оправить заложенные пазовые коробочки оправкой и установить статор на специальную подставку.

Укладка секций

- 1. Взять комплект секций на электродвигатель и положить слева от подставки.
 - 2. Взять одну группу фазы и развязать нитки, связывающие группу.
- 3. Первую секцию согнуть. Секцию сгибать так, чтобы части секции, вкладываемые в пазы, были параллельны. Вязки сдвинуть на лобовые части.
- 4. В первый паз вставить одну сторону секции, заправляя проводники ножом, оправкой, изготовленным из твердых пород дерева или текстолита, эбонита и т. д. Первым пазом считается паз (если смотреть слева), лежащий напротив кармана или места выхода из статора выводных концов. Укладку производят по часовой стрелке.
 - 5. Закрепить секции пазовой крышкой.
 - 6. Обжать секцию в пазу гладилкой и заклинить клином.

- 7. В зависимости от шага по пазам отсчитать необходимый паз и вставить в него вторую сторону секции, повторяя операции по укладке первой стороны.
 - 8. Уложить в том же порядке остальные катушки секции.
 - 9. Согласно схеме обмотки уложить остальные секции.
- 10. Установить шаблон для формовки лобовых частей в расточку статора и оправкой отформовать лобовую часть (рис. 6.8). Вставить лобовые межфазные прокладки.

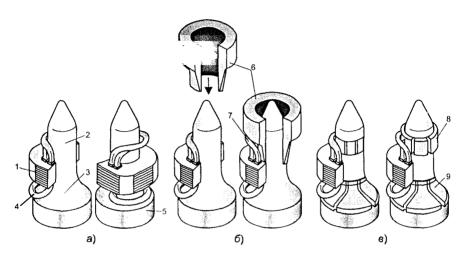


Рис. 6.8. Формовка лобовых частей обмотки статора: a — с помощью одной конусной оправки, b — с помощью двух оправок, b — с помощью оправки с радиально расходящимися сегментами. 1 — статор; b — цилиндрическая часть оправки; b — коническая часть оправки; b — основание оправки; b — вторая съемная оправка; b и 9 — радиально расходящиеся сегменты

- 11. Повернуть электродвигатель другой стороной, повторить процесс формовки лобовой части. Вставить лобовые межфазные прокладки.
- 12. Статор установить вертикально, расправить концы секций и надеть на них поливинилхлоридные или линоксиновые трубки.
- 13. На концы секций в местах межкатушечных соединений надеть поливинилхлоридные или линоксиновые трубки по одной на каждое.
 - 14. Зачистить места сварки от изоляции и соединить катушки (рис. 6.9).
 - 15. Подсоединить выводные концы.
- 16. Места соединений сварить при помощи сварочного трансформатора. Концы обмотки свариваются на стыковом аппарате. Для этого к зачищенным и скрученным вместе проводам прикладывают металлический электрод. В данном случае используют плоскогубцы, к которым присоединен один провод от сварочного трансформатора. Ручки плоскогубцев изолированны. К концу скрутки прикладывают угольный электрод. Возникшая дуга оплавляет провода и сваривает их. Момент сварки изображен на рис. 6.10.
 - 17. Зачистить место сварки, отогнуть скрутку и надвинуть трубку.

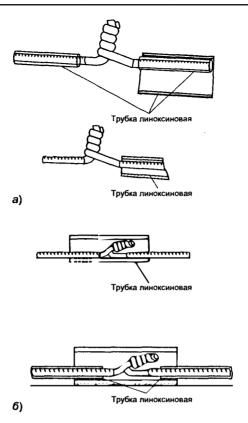


Рис. 6.9. Соединение проводов: a — скрутка; δ — изолировка

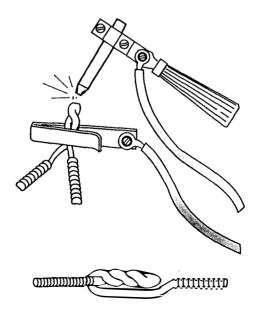


Рис. 6.10. Сварка проводов

- 18. Надвинуть линоксиновую (поливинилхлоридную) трубку большего диаметра на отогнутую скрутку с выводным концом так, чтобы каждый ее конец находил на трубку меньшего диаметра не меньше чем на 10 мм.
- 19. Уложить выводные концы, направив их к карману или месту вывода, а затем связать в пучок.
- 20. Забандажировать лобовую часть хлопчатобумажным шнур-чулком или стеклошнур-чулком, прошивая обмотку возле каждого паза. Шнур завязать узлом у первого паза.
 - 21. Повернуть статор и забандажировать вторую лобовую часть.
- 22. Установить статор в приспособление для опрессовки. Выводные концы заправить в соответствующую прорезь. Опрессовать лобовую часть. Повернуть статор и опрессовать вторую лобовую часть.
- 23. После опрессовки произвести перетяжку бандажа. Развязать крепление шнур-чулка, выбрать слабину, образовавшуюся при опрессовке и завязать узлом заново.

При изготовлении приспособления для опрессовки лобовых частей статора необходимо учитывать, что после опрессовки обмотки лобовых частей немного пружинят, увеличивая размер на 2...3 мм. Кроме того, необходимо также учитывать увеличение размера лобовых частей обмотки на 2...3 мм после пропитки и сушки.

- 24. Установить шаблон для оправки лобовых частей и оправить последние с обеих сторон статора.
 - 25. Произвести контроль обмотки на контрольном стенде.
 - 26. Отправить статор на пропитку и сушку.

6.5. Пропитка и сушка статорных обмоток

Технологическая операция № 14 — пропитка и сушка статорных обмоток.

Оборудование: печь сушильная камерная с регулированием обмена воздуха и аппаратурой для контроля и регулирования температуры; вакуумпропиточная установка; пульверизаторы и пульверизаторная камера, оборудованная вентиляцией; мегомметр; вискозиметр.

Пропитка статорных обмоток

- 1. Лаки и эмали довести до нормальной консистенции и вязкости. Разбавители должны быть подобраны с учетом недопустимости коагуляции лаков и эмалей.
- 2. Не реже одного раза в неделю, а также при каждой загрузке новой порции проверять вязкость лака и его качество по лаковой пленке, нанесенной на полоску конденсаторной бумаги или кальки. Для этого лак в баке тщательно перемещать, погрузить в него полоску чистой бумаги шириной 40...45 мм и диной 150...200 мм, вынуть и после того, как стекут излишки лака, осмотреть качество пленки. Лак хорошего качества образует гладкую, ровную, без просветов пленку.
 - 3. Очистить от пыли и загрязнений узлы до предварительной сушки.

- 4. При сушке обмоток статоров необходимо предусмотреть возможность свободного доступа к ним горячего воздуха.
- 5. Предварительную сушку без вакуума производить в автоклаве, для чего после его загрузки ненагретыми обмотками крышку автоклава не закрывать, включить обогрев, повысить температуру в нем до 80...100 °С и сушить в течение 2 часов.
- 6. Закрыть крышку, плотно затянуть винты, включить вакуумный насос и создать в автоклаве разряжение до 720...740 мм рт. ст. Окончательную сушку производить в течение 2 часов.
- 7. Включить обогреватель смесителя, подогреть лак до температуры 50...60 °С и, перемешивая, перекачать в автоклав.
- 8. Наблюдать за уровнем лака в смотровое окно и после того, как он покроет все узлы и уровень поднимется на 4...5 см выше узлов, подачу лака прекратить.
- 9. Прекратив подачу лака в автоклав, сохранить в течение 5...10 мин оставшееся в нем разряжение при температуре 60...70 °C, а затем повысить давление до атмосферного и выдержать обмотки еще 5...10 мин.
- 10. Включить компрессор, поднять давление в автоклаве до 3...4 атм. и выдержать его в течение 3...5 мин.
 - 11. Снизить давление до атмосферного и выдержать его в течение 3...5 мин.
- 12. Повысить давление до 3...4 атм. на такое же время, после чего снизить его до атмосферного и цикл повторить.

В зависимости от условий работы двигателя и коэффициента заполнения паза проводом, а также при пропитке многовитковых катушек пропитка по такому тренировочному режиму может иметь 3—5 циклов.

- 13. По окончании последнего цикла пропитки в автоклаве снизить давление до величины, несколько превышающей атмосферное, открыть вентиль и перегнать лак в смеситель.
- 14. Когда лак перейдет в смеситель, вентиль не перекрывать в течение 30 мин; за это время лак стечет с узлов и перейдет в смеситель, после чего вентиль закрыть.
- 15. Не открывая крышку автоклава, включить нагреватель, довести температуру обмоток до 70...80 °С, включить вакуумный насос и при вакууме не менее 720 мм рт. ст. сушить их в течение 4 часов.
 - 16. Соединить автоклав с атмосферой, открыть крышку и выгрузить статор.
- 17. Все металлические поверхности и выводные концы обмоток протереть салфеткой, смоченной в скипидаре. Для придания эластичности выводным концам их после пропитки перед сушкой смазать касторовым маслом.
- 18. При снижении температуры печи до 100 °C время сушки удваивают. Время пребывания обмоток в печи при температуре ниже 100 °C не учитывают.
- 19. Общее время нахождения на воздухе пропитанных обмоток до загрузки их в сушильную печь не должно превышать 40 мин.
- 20. Сушку лобовых частей, покрытых эмалью СВД, производят при температуре 60—70 °C в течение 3 час, затем при температуре 20 °C до прекращения отлипа.

21. Лакировку лобовых частей обмоток статора производят пульверизатором с последующей сушкой по режимам, указанным в табл. 6.4. Наносить эмаль на обмотки при температуре последних 50...70 °C.

Наименование операции	Марка лака, эмали	Температура, °С	Продолжительность сушки, час.
Сушка после пропитки	№ 447	110120	818
	. № 458	110120	615
	321T	120125	515
	МЛ-92	130150	7
Сушка после лакировки	ГФ-92-ХС (СВД)	6070	3
	ГФ-92-ГС (СПД)	110120	46

Таблица 6.4. Режим сушки после пропитки и лакировки

22. Качество сушки контролируют по величине сопротивления изоляции после окончательной пропитки и сушки. Величину сопротивления изоляции обмоток статоров после окончательной пропитки и сушки измеряют мегомметром на 500 В по истечении не более 10 мин после выгрузки статоров из печи.

Величина сопротивления изоляции при этом должна быть не менее 1 МОм. В случае меньших значений величины сопротивления изоляции производят повторное измерение с замером температуры обмоток, которая должна быть не менее 100 °C.

23. Обмотки статоров, не удовлетворяющие указанной величине сопротивления изоляции, должны подвергаться дополнительной сушке до получения требуемой величины сопротивления изоляции.

7. Изготовление деревянных клиньев

Секции обмоток статоров и роторов электродвигателей после укладки обмотки в паз заклиниваются клиньями из крепкого дерева. На рис. 7.1 показан общий вид станка для изготовления клиньев. Литая станина (1) в виде прямоугольной коробки имеет салазки (2) горизонтального хода и салазки (3) поперечного хода. Доска — заготовка укрепляется зажимами. Вращение вала (4) с фасонной фрезой (5) осуществляется электродвигателем (6) мощностью 5 кВт, 1440 об/мин. Вращение вала (7) с пилой (8) осуществляется другим таким же электродвигателем (9).

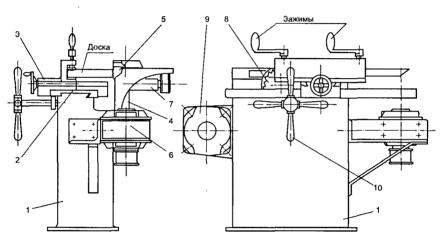


Рис. 7.1. Общий вид станка для изготовления клиньев: 1 — литая станина, 2 — салазки горизонтального хода, 3 — салазки поперечного хода, 4 — вал фасонной фрезы, 5 — фасонная фреза, 6 и 9 — электродвигатель, 7 — вал дисковой пилы, 8 — дисковая пила, 10 — штурвал

Станок работает следующим образом. Доска-заготовка салазками (3) подводится своей кромкой к фасонной фрезе. Затем при помощи штурвала (10) стол приводится в движение в продольном направлении. При этом фрезеруется кромка доски и одновременно отрезается несколько заготовок, которые потом разделяются на клинья.

Изготовление клиньев схематично изображено на рис. 7.2.

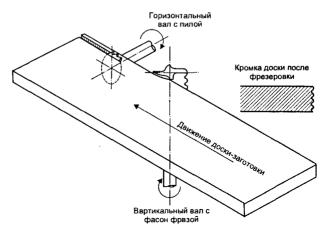


Рис. 7.2. Схема изготовления клиньев

8. Обмоточные данные электрических машин

Таблица 8.1. Условные обозначения величин, принятых в таблицах обмоточных данных

Обозначение	Условные обозначения величин, принятых в таблицах обмоточных данных Наименование
Р	Номинальная мощность на валу
U ₁	Номинальное линейное напряжение статора
U ₂	Номинальное линейное напряжение ротора
11	Номинальный линейный ток статора
12	Номинальный линейный ток ротора
П	Частота вращения при номинальной нагрузке
пс	Синхронная частота вращения
D _c	Наружный диаметр активной стали статора
dc	Внутренний диаметр активной стали статора
l	Длина железа сердечника статора
Q	Площадь паза в штампе
Qиз	Площадь изолированного паза
δ	Воздушный зазор междужелезного пространства
Z ₁	Число пазов статора
Z2	Число пазов ротора
y 1	Шаг обмотки по пазам статора
y 2	Шаг обмотки по пазам ротора
d _{np}	Диаметр голого обмоточного провода

Обозначение	Наименование
а×р	Размер голого прямоугольного обмоточного провода
Пх	Число полюсных катушек
∏ _{K1}	Число катушек в группе обмотки статора
∏ _K 2	Число катушек в группе обмотки ротора
П _{К.Ф}	Число катушек на фазу
2р	Число полюсов
Sn	Чиспо эффективных проводников в пазу
П _{Э1}	Число элементарных проводников в пазу статора
Пэ2	Число элементарных проводников в пазу ротора
N	Число сторон секций в пазу
m ₁	Число параллельных проводников обмотки статора
m ₂	Число параллельных проводников обмотки ротора
a,	Число параллельных ветвей обмотки статора
a ₂	Число параллельных ветвей обмотки ротора
W _K 1	Число эффективных витков в катушке обмотки статора
Wφ	Число эффективных витков в фазе
ω ₁	Число витков последовательно на фазу
G ₁	Масса обмоточного провода статора
G ₂	Масса обмоточного провода ротора
R	Сопротивление обмотки
l r1	Активное сопротивление фазы обмотки статора
r 2	Активное сопротивление фазы обмотки ротора

8.1. Обмоточные данные электродвигателей единой серии А2 и АО2 и их модификаций 1—9-го габаритов на напряжение 220/380 В

Таблица 8.2. Обмоточные данные электродеигателей единой серии A2 и AO2 и их модификаций 1-го габарита

		•					на	напряже	ение 220/380	В						<u>.</u>		
_					· — ·					Статор								Ротор
Тип электро- двигателя	Р, кВт	П, ми Н ⁻¹	lt, A	Dc/dc,	Ļ, MM	δ, мм	Zį	y 1	Тип обмотки	n _K t	N ₃₁	m ₁	aı	W _K t	Диаметр провода	G1	r1	z2
АОЛ2-11-2	0,8	2815	3,1/1,8	133/73	54	0,4	24	1-12;	Однослойная	2	97	1	-	97	0,64	1,48	9,28	20
АОЛС2-11-2	0,9	2670	3,7/2,1					2–11			93			93	0,64	1,41	8,75	
АОЛ2-11-2-Х	0,6	_									92			92	0,51	0,855	13,5	
АОЛ2-11-2-60	0,8		-								86			86	0,67	1,42	7,52	
AO2-11-2	0,8	2815	3,1/1,8								97			97	0,64	1,46	8,97	
AOC2-11-2	0,9	2670	3,7/2,1	133/73	52	0,35	24	1-12;	,		93			93	0,64	1,40	8,6	20
A02-11-2-X	0,6	_	_					2-11			92			92	0,51	1,03	13,4	
A02-11-2-60	8,0										86			86	0,67	1,37	7,37	
АОЛ2-12-2	1,1	2815	4,2/2,4	133/73	67	0,4	24	1-12;	Однослойная	2	78	1	-	78	0,72	1,58	6,28	20
АОЛС2-12-2	1,3	2670	5,2/3					2-11			75			75	0,72	1,51	6,02	
АОЛ2-12-2-Х	0,8	-									81			81	0,55	0,93	11,1	
АОЛ2-12-2-60	1,1		-								69			69	0,74	1,48	5,25	
AO2-12-2	1,1	2815	4,2/2,4	133/73	65	0,35	24	1-12;		•	78			78	0,72	1,56	6,05	20
AOC2-12-2	1,2	2670	5,2/3			-		2-11			75			75	0,72	1,60	5,83	
AO2-12-2-X	0,8	_									81			81	0,55	1,1	10,8	
AO2-12-60	1,1	-	_								69]		69	0,74	1,43	5,15	

Ţ		,								Статор								Ротор
Тип электро- двигателя	P, ĸBτ	п, мин ⁻¹	I ₁ ,	Dc/dc,	L,	δ, мм	Z 1	y 1	Тип обмотки	n _{k1}	fi ₃₁	m ₁	aı	W _K 1	Диаметр провода	G1	r1	z2
АОЛ2-11-4	0,6	1360	2,8/1,6	133/80	54	0,3	24	1-8;	Однослойная	2	129	1		129	0,57	1,25	12,5	30
АОЛС2-11-4	0,6	1300	3,2/2,8			0,3		2–7			124			124	0,57	1,19	12	
АОЛ2-11-4-Х	0,4	_	_			0,3					125			125	0,41	0,611	23,4	
АОЛ2-11-4-Ш	0,4	1370	2,1/1,2			0,4					154			154	0,51	1,19	18,7	
АОЛ2-11-4-60	0,6	_				0,3					122			122	0,57	1,17	11,8	
A02-11-4	0,6	1370	2,8/1,6	133/80	52	0,25	24	1-8;			129			129	0,57	1,19	11,6	30
AOC2-11-4	0,6	1370	3,1/1,8					2–7			128			128	0,57	1,18	11,5	
AO2-11-4-X	0,4	_	_								125			125	0,41	0,74	21,8	
АО2-11-4-Ш	0,4	1370	2,1/1,2								150			150	0,51	1,12	16,9	
AO2-11-4-60	0,6	-							Однослойная		122			122	0,57	1,09	11,2	
АОЛ2-12-4	0,8	1360	3,6/2,1	133/80	67	0,3	24	1-8;		2	107	1	_	107	0,62	1,31	9,4	30
АОЛС2-12-4	0,9	130	4,3/2,5			0,3		27			101			101	0,64	1,32	8,35	
АОЛ2-12-4-Х	0,6	-				0,3					100			100	0,49	0,746	14,1	
AOЛ2-12-4-Ш	0,5	1370	3/1,7			0,4					116			116	0,59	1,29	11,3	
АОЛ2-12-4-60	0,8	-	_			0,3					98			98	0,64	1,28	8,1	
AO2-12-4	0,8	1360	3,6/2,1	133/80	65	0,25	24	1-8;	-		107			107	0,62	1,26	8,8	30
AOC2-12-4	0,9	1300	4,3/2,5					2–7			98			98	0,64	1,23	7,57	
AO2-12-4-X	0,6	-									100			100	0,49	0,865	13,2	
АО2-12-4-Ш	0,6	1370	3/1,7								112			112	0,59	1,2	10,2,	
AO2-12-4-60	0,8										98			98	0,64	1,19	7,68,	

Tue 0-04-0-	n	_	,							Статор								Ротор
Тип электро- двигателя	P, ĸBt	п, мин ⁻¹	A A	Dc/dc,	L, MM	δ,` мм	Z ₁	y 1	Тип обмотки	Π _{K1}	N ₃ 1	m ₁	a ₁	W _K 1	Диаметр провода	G1	r1	z 2
АОЛ2-11-6	0,4	915	2,4/1,4	133/80	67	0,3	36	18; 2-7	Однослойная	2	120	1	_	120	0,55	1,51	17,5	26
АОЛС2-11-6	0,4	870	2,4/1,4			!		2-1			120			120	0,55	1,51	17,5	
АОЛ2-11-6-60	0,4	_	_								112			112	0,57	1,51	15,2	
AO2-11-6	0,4	916	2,4/1,4	133/80	65	0,25	36	1-8; 2-7			122			122	0,55	1,51	17,1	26
AOC2-11-6	0,4	870	2,4/1,4					2-1			120			120	0,57	1,6	15,6	
AO2-11-6-60	0,4	-	-								111			111	0,57	1,53	13,8	
АОЛ2-12-6	0,6	915	3,3/1,9	133/80	77	0,3	36	1-8; 2-7	Однослойная	2	95	1	-	95	0,64	1,73	10,8	26
АОЛС2-12-6	0,6	870	3,5/2			!		2-1			94			94	0,64	1,69	10,7	
АОЛ2-12-6-Х	0,4	_	_								97			97	0,67	1,0	18,9	
АОЛ2-12-6-Ш	0,4	920	2,5/1,5								106			1 0 6	0,59	1,62	14,3	
АОЛ2-12-6-60	0,6	-	-								91			91	0,64	1,64	10,4	
AO2-12-6	0,6	915	3,3/1,9	133/80	75	0,25	36	1-8;			95			95	0,64	1,7	10,4	26
AOC2-12-6	0,6	870	3,5/2					2~1			94			94	0,64	1,68	10,3	
AO2-12-6-X	0,4		_								97			97	0,49	1,19	18,3	
AO2-12-6-Ш	0,4	920	2,5/1,5			 					106			106	0,62	1,73	12,4	
AO2-12-6-60	0,6		_								91			91	0,64	1,58	10,2	

Ротор

Таблица 8.3. Обмоточные данные электродвигателей единой серии A2 и AO2 и их модификаций 2-го габарита на напряжение 220/380 В Статор

T 0=04=0:	_ n	_	1.							Ciaiu	, 							10100				
Тип электро- двигателя	P, ĸBt	п, мин ⁻¹	l ₁ ,	Dc/dc,	L,	δ, мм	Z1	y 1	Тип обмотки	Π _K 1	П _{э1}	m ₁	a ₁	W _K 1	Диаметр провода	G1	r1	z 2				
АОЛ2-21-2	1,5	2860	5,6/3,2	153/86	65	0,45	24	1-12;	Однослойная	2	69	1	-	69	0,86	2,15	4,19	20				
АОЛС2-21-2	1,8	2730	7,1/4,1	-				2-11			66			66	0,9	2,25	3,67					
АОЛ2-21-2-Х	1,1	_	-								7 8			78	0,8	2,11	5,47					
АОЛ2-21-2-60	1,5	-	_	-							62			62	0,93	2,26	3,23					
AO2-21-2	1,5	2860	5,6/3,2	153/86	63	0,4	24	1-12;	1		69			69	0,86	2,12	4,1	20				
AOC2-21-2	1,8	2730	7,1/4,1					2-11			66			66	0,9	2,22	3,58					
AO2-21-2-X	1,1	_	_]							75			75	0,69	1,69	7,08					
AO2-21-2-60	1,5	_	_			_					64			64	0,9	2,16	3,47					
АОЛ2-21-2	2,2	2860	7,8/4,5	153/86	92	0,45	24	1-12;	Однослойная	2	54	1	-	54	0,96	2,32	2,92	20				
АОЛС2-21-2	2,5	2730	9,7/5,6					2-11			50			50	1,0	2,34	2,5					
АОЛ2-21-2-Х	1,5	_	_	~				1-12; 2-11			65			65	0,9	2,46	4					
АОЛ2-21-2-60	2,2	_	_	_							48			48	1,04	2,43	2,21					
AO2-21-2	2,2	2860	7,8/4,5	153/86	90	0,4	24					54			54	0,96	2,3	2,86	20			
AOC2-21-2	2,5	2730	9,7/5,6							2–11	2–11	2–11	2–11	2–11			50			50	1,0	2,32
AO2-21-2-X	1,5	-	_								58			58	0,8	1,93	4,52					
AO2-21-2-60	2,2	_	_								47			.47	1,08	2,53	1,97					
АОЛ2-21-4	1,1	1400	4,7/2,7	153/94	70	0,3	24	1-8;	Однослойная	2	92	1	-	92	0,77	1,89	5,69	30				
АОЛС2-21-4	1,3	1300	6,1/3,5			0,3		2–7			85			85	0,8	1,88	4,88					
АОЛ2-21-4-Х	0,8	_				0,3					101			101	0,72	1,8	7,16					
АОЛ2-21-4-Ш	0,8	1400	3,8/2,2			0,4					105			105	0,74	1,99	7,05					
АОЛ2-21-4-60	1,1	_	_			0,3					86			86	0,8	1,9	4,94					

	_ n	_								Статор)				.,			Ротор
	P, kBt	л, мин ⁻¹	l ₁ ,	Dc/dc, MM	L, MM	δ, мм	Z 1	y 1	Тип обмотки	Пк1	Пэ1	m ₁	a ₁	W _{K1}	Диаметр провода	G1	r1	z 2
	1,1	1400	4,7/2,7	153/94	70	0,25	24	1-8;	Однослойная	2	92	1	_	92	0,78	1,86	5,55	30
_	1,3	1300	6,1/3,5			0,25		2–7			83			83	0,83	1,96	4,33	
	8,0					0,25					93			93	0,62	1,39	8,82	
	0,8	1400	3,8/2,2			0,3					103			103	0,74	1,92	6,75	
	1,1		<u>-</u>			0,25					87			87	0,8	1,9	4,89	
	8,0	1420	2,66/1,54			0,25					103			103	0,74	1,92	6,75	
	1,5	1400	6/3,5	153/94	97	0,3	24	1-8;	Однослойная	2	71	1	-	71	0,9	2,24	3,65	30
	2	1300	8,5/4,9			0,3		2–7			62			62	0,96	2,23	2,8	
	1,1					0,3					81			81	0,83	2,19	4,9	
	1,1	1400	5,2/3			0,4					76			76	0,86	2,2	4,27	
	1,5		_			0,3					64			64	0,96	2,3	2,9	
	1,5	1400	6/3,5	153/94	95	0,25	24	1-8;			71			71	0,9	2,2	3,55	30
	2	1300	8,5/4,9			0,25		2-7			60			60	0,96	2,13	2,57]
	1,1					0,25					74			74	0,72	1,64	5,86	
	1,1	1400	5,2/3			0,3					80			80	0,86	2,26	4,38	
	1,5	_				0,25					65			65	0,93	2,15	3,04	
_	1,1	1420	4,45/2,58			0,25					80			80	0,86	2,26	4,38	<u> </u>
	8,0	930	4/2,3	153/98	70	0,3	36	1-8;	Однослойная	2	85	1	-	85	0,69	1,81	8,48	26
_	1	870	5,8/3,4			0,3		27			78			78	0,72	1,79	7,15	
	0,6	_	-		•	0,3					97			97	0,64	1,78	11,2	
	0,6	930	3,45/1,99			0,35					97			97	0,67	1,94	10,2	
	0,8	_				0,3					77			77	0,74	1,89	6,68	

Тип электродвигателя

AO2-21-4 AOC2-21-4 AO2-21-4-X АО2-21-4-Ш AO2-21-4-60 AOT2-21-4 АОЛ2-22-4 АОЛС2-22-4 АОЛ2-22-4-Х АОЛ2-22-4-Ш АОЛ2-22-4-60 AO2-22-4 AOC2-22-4 AO2-22-4-X АО2-22-4-Ш AO2-22-4-60 AOT2-22-4 АОЛ2-21-6 АОЛС2-21-6 АОЛ2-21-6-Х АОЛ2-21-6-Ш АОЛ2-21-6-60

Тип электро-	_		1.							Статор)							Ротор
двигателя	Р, кВт	п, мин ⁻¹	li, A	Dc/dc, мм	L, MM	δ, мм	z ₁	y 1	Тип обмотки	Π _K 1	N ₃ 1	m ₁	aı	W _K 1	Диаметр провода	G1	r1	z 2
AO2-21-6	0,8	930	4/2,3	153/98	70	0,25	36	1-8; 2-7	Однослойная	2	85	1	-	85	0,69	1,74	8,1	26
AOC2-21-6	1	870	5,8/3,4			0,25		21			75			75	0,77	1.9	5,71	
AO2-21-6-X	0,6	_	_			0,25					74			74	0,57	1,41	12,3	
АО2-21-6-Ш	0,6	930	3,45/1,99			0,3					100			100	0,67	1,93	10,1	
AO2-21-6-60	0,8	_	_			0,25					79			79	0,74	1,87	6,65	
AOT2-21-6	0,6	920	2,96/1,71			0,25					100			100	0,67	1,93	10,1	
АОЛ2-22-6	1,1	930	5,2/3	153/98	97	0,3	36	1-8;	Однослойная	2	65	1	-	65	0,8	2,15	5,57	26
АОЛС2-22-6	1,3	870	7,3/4,2			0,3		2–7			58			58	0,83	2,06	4,61	
АОЛ2-22-6-Х	0,8	_	_			0,3					73			73	0,74	2,06	7,32	
АОЛ2-22-6-Ш	0,8	930	4,35/2,5			0,35					72			72	0,77	2,2	6,65	
АОЛ2-22-6-60	1,1		_			0,3					59			59	0,86	2,25	4,37	
AO2-22-6	1,1	930	5,2/3	153/98	95	0,25	36	1-8;			65			65	0,8	2,06	5,3	26
AOC2-22-6	1,3	870	7,3/4,2			0,25		2–7			58			58	0,86	2,32	4,08	
AO2-22-6-X	0,8	-	-			0,25					69			69	0,64	1,64	9,15	
АО2-22-6-Ш	0,8	930	4,34/2,5			0,3					79			79	0,74	2,14	7,55	
AO2-22-6-60	1,1	_	_			0,25					62			62	0,93	2,11	4,7	
AOT2-22-6	0,8	920	3,79/2,19			0,25					79			79	0,74	2,14	7,55	

Ta	блица 8.	4. Обмот	ючные д	анны	е элек	•		единой сери ние 220/380 L		u AO2 u	UX M	одиф	оикаций 3-	го габар	uma			738
								(татор								Ротор	
κB		l ₁ ,	Dc/dc,	Ĺ, MM	δ, мм	Zı	y ₁	Тип обмотки	Πĸ1	Пэt	m ₁	aı	W _K 1	Диаметр провода	Ġ1	r1	z 2	
3	2880	10,5/6	180/106	90	0,5	24	1-12; 2-11;	Одно-, двух-	3	102 и 94	2	-	51-25-22	0,86	3,51	1,7	20	
3,	5 2760	13,3/7,7					3–10	слойная		86 u 74	2		43-22-15	0,93	3,51	1,25		۹
2,	2 –	_								53 и 49	1		53-26-23	1	2,66	2,63		Ν
3	-	_								46 u 43	1		46-23-20	1,25	3,36	1,46		Оомоточны
3,	0 2880	10,5/6	180/106	88	0,4	24	1-9	Двухслойная	4	52	1	-	26	1,16	3,15	1,84	20	5
3,	5 2700	13,3/7,7								50			25	1,25	3,51	1,52		1616

Одно-, двух-

Слойная

Двухслойная

Однослойная

54

48

80 u 78

70 u 66

43 и 40

36 u 35

84

40

42

40

42

39

49

50

38

3

3 3

4

4

2

2

2

1

1

1

27

24

40-21-18

35-18-15

43-21-19

36-19-16

21

20

21

20

42

39

49

50

38

0,93

1,25

0,96

1,04

1,12

1,40

0,96

1,4

1,08

1,4

1,08

1,12

1,08

1,0

1,12

2,28

3,37

3,86

3,91

2,94

3,6

3,82

3,88

2,6

3,88

2,99

3,0

2,12

3,06

2,9

2,97

1,46

1,21

0,88

3,86

1,01

1,19

1,07

1,89

1,07

2,34

2,01

4,97

3,25

1,96

20

20

26

Тип электродвигателя

АОЛ2-31-2

АОЛС2-31-2

АОЛ2-31-2-Х АОЛ2-31-2-60 AO2-31-2 AOC2-31-2

AO2-31-2-X

AO2-31-2-60

АОЛ2-32-2

АОЛС2-32-2

АОЛ2-32-2-Х

АОЛ2-32-2-60

AO2-32-2

AOC2-32-2

AO2-32-2-X

AO2-32-2-60

АОЛ2-31-4

АОЛС2-31-4

АОЛ2-31-4-X

АОЛ2-31-4-Ш

АОЛ2-31-4-60

2,2

3,0

4,0

4,8

3,0

4,0

4,0

4,8

3,0

4,0

2,2

3,0

1,5

1,5

2,2

_

2880

2760

2880

2700

1430

1350

1430

13,8/8

17,5/10,1

13,8/8

17,5/10,1

_

8,5/4,9

12,6/7,3

6/3,5

180/106

180/106

180/112

117

115

90

0,5

0,4

0,35

0,35

0,35

0,4

0,35

24

1-12; 2-11;

3-10

1-9

1-12; 2-11;

3-10

T 0=0×===	_									татор								Ротор
Тип электро- двигателя	P, ĸBŧ	п, мин ⁻¹	l ₁ , A	Dc/dc, мм	L, MM	δ, мм	Zı	y 1	Тип обмотки	Пк1	Пэ1	m ₁	a ₁	W _K 1	Диаметр провода	G1	r1	z2
AO2-31-4	2,2	1430	8,5/4,9	180/112	88	0,35	36	1-12; 2-11;	Однослойная	3	43	1		43	1,08	3,09	2,4	26
AOC2-31-4	3,0	1350	12,6/7,3			0,35		3-10			38			38	1,16	3,15	1,83	
AO2-31-4-X	1,5	_	_			0,35					48			48	0,8	2,08	4,88	
АО2-31-4-Ш	1,5	1430	6/3,5			0,4					50			50	1,0	3,06	3,25	
AO2-31-4-60	2,2	_	_			0,35					39			39	1,16	3,23	1,89	
AOT2-31-4	1,5	1430	6/3,48			0,35					50			50	1,0	3,08	3,25	26
АОЛ2-32-4	3,0	1430	11,2/6,5	180/112	1 17	0,35	36	1-12; 2-11;	Однослойная	3	33	1	_	33	1,25	3,49	1,53	26
АОЛС2-32-4	4,0	1350	16,1/9,4			0,35		3–10			60	2		30	0,93	3,53	1,25	
АОЛ2-32-4-Х	2,2	-	_			0,35					36	1		36	0,93	2,3	3,04	
АОЛ2-32-4-Ш	2,2	1430	8,5/4,0			0,4					38	1		38	1,16	3,48	2,04	
АОЛ2-32-4-60	3,0	_	_			0,35					30	1		30	1,25	3,16	1,39	
AO2-32-4	3,0	1430	11,2/6,5	180/112	115	0,3	36	1-12; 2-11;			34	1		34	1,25	3,63	1,58	26
AOC2-32-4	4,0	1350	16,2/9,4			0,3		3–10			30			30	1,3	3,47	1,28	
AO2-32-4-X	2,2	_	_			0,3					36			36	0,96	2,47	2,83	
АО2-32-4-Ш	2,2	1430	8,5/4,9			0,35					38			38	1,16	3,48	2,04	
AO2-32-4-60	3,0	-				0,35					32			32	1,3	3,7	1,37	
AOT2-32-4	2,3	1430	8,4/4,85			0,3					38			38	1,16	3,51	2,05	
АОЛ2-31-6	1,5	950	6,6/3,8	180/118	90	0,35	36	1-8; 2-7	Однослойная	2	60	1	-	60	1,04	3,42	3,12	44
АОЛС2-31-6	2,0	870	10,3/5,9			0,35	ı				56			56	1,08	3,44	2,68	
АОЛ2-31-6-Х	1,1		_			0,35					63			63	0,8	2,42	5,66	
АОЛ2-31-6-Ш	1,1	950	5,1/2,95			0,4					71			71	0,96	3,54	4,45	
АОЛ2-31-6-60	1,5	_				0,35					54	Total Section 1		54	1,08	3,34	2,58	

Ротор

a	
_	
\sim	
OMO	
2	
5	
AIGHADIII	
C	
7	
I	
191	
Œ	
ũ	
Ī	
Ī	
19	
ē	
HHBIE SITE	
2	
ē	
Ž	
=	
RIIIDUAECKUX	
č	
e de	
Œ	
Σ	
?	
X	
Mamu	
7	
6	
2	
Ì	

двигателя	кВт	МИН ^{- †}	A A	Dc/dc,	L, MM	δ, мм	Z ₁	y 1	Тип обмотки	n _K †	Nat	m _t	aı	W _K 1	Диаметр провода	G1	r1	z2	
AO2-31-6	1,5	950	6,6/3,8	180/122	88	0,3	36	1-8; 2-7	Однослойная	2	60	1	_	60	1,0	3,28	3,45	33	
AOC2-31-6	2,0	870	10,3/5,9			0,3					54			54	1,04	3, 19	2,87	33	
AO2-31-6-X	1,1	_	_			0,3					64			64	0,8	2,48	5,75	33	9
АО2-31-6-Ш	1,1	950	5,1/2,95			0,35					71			71	0,96	3,54	4,45	46	Осімої і очные
AO2-31-6-60	1,5	_	_			0,3					55			55	1,04	3,25	2,94	33	2
AOT2-31-6	1,1	950	4,9/2,84			0,3					71			71	0,96	3,56	4 ,45	33	
АОЛ2-32-6	2,2	950	9,2/5,3	180/118	117	0,35	36	1-8; 2-7	Однослойная	2	92	2	_	46	0,83	3,8	2,12	44	Оанные
АОЛС2-32-6	2,7	870	13,1/7,6			0,35					43	1		43	1,25	4,0	1,75		
АОЛ2-32-6-Х	1,5	_	_			0,35			·		49	1		49	0,93	2,81	3,72		sneknipu
АОЛ2-32-6-Ш	1,5	950	6,8/3,9			0,4					54	1		54	1,12	4,14	2,79		lifou

Статор

42

46

43

51

54

42

54

42

46

43 51

54

42

54

1

1,2

1,12

1,20

0,93

1,12

1,20

1,12

3,6

3,55

3,83

2,94

4,14

3,74

4,16

1,86

2,39

1,95

3,84

2,79

1,9

2,8

33

33

33

46

33

33

АОЛ2-32-6	2,2	950	9
АОЛС2-32-6	2,7	870	13
АОЛ2-32-6-Х	1,5	-	
АОЛ2-32-6-Ш	1,5	950	6
АОЛ2-32-6-60	2,2	_	
AO2-32-6	2,2	950	9
AOC2-32-6	2,7	870	13
AO2-32-6-X	1,5	_	
АО2-32-6-Ш	1,5	950	6

2,2

1,5

_

950

6,45/3,73

AO2-32-6-60

AOT2-32-6

,2/5,3 180/122 3,1/7,6 6,8/3,9

0,35

0,3

0,3

0,3

0,35

0,3

0,3

115

1-8; 2-7

Таблица 8.5. Обмоточные данные электродвигателей единой серии A2 и AO2 и их модификаций 4-го габарита на напряжение 220/380 В

.	_	_	Ι.						(Статор								Ротор
Тип электро- двигателя	P, kBt	п, мин ⁻¹	l _t , A	Dc/dc,	L,	δ, мм	Zţ	Уt	Тип обмотки	n _{kt}	Пат	m _t	aı	W _K 1	Диаметр провода	G1	r1	z2
AO2-41-2	5,5	2900	18,8/10,9	208/123	110	0,6	24	1-10	Двухслойная	4	68	2	-	17	1,25	6,28	0,671	20
AOC2-41-2	6,8	2760	24,2/14								64			16	1,3	6,4	0,584	
AO2-41-2-X	4,0		_								76			19	1,0	4,85	1,17	
AO2-41-2-60	5,5	_	_								64			16	1,3	6,4	0,584	
AO2-42-2	7,5	2910	25,4/14,7	208/123	148	0,6	24	1-10	Двухслойная	4	54	1	2	27	1,4	6,94	0,47	20
AOC2-42-2	9	2760	31,2/18,1								50	1	2	25	1,0	6,58	0,427	
AO2-42-2-X	5,5	_	-								60	2	-	15	1,12	5,3	0,82	
AO2-42-2-60	7,5	-	-								100	2	2	25	1,0	6,58	0,428	
AO2-41-4	4	1450	14,3/8,3	208/133	110	0,35	36	1-12; 2-11;	Однослойная	3	66	2	-	33	1,08	5,76	1,1	26
\ОП2-41-4	4	1440	15,2/8,8			0,35		3-10			60	2		30	1,12	5,63	0,93	
AOC2-41-4	5,2	1350	19,4/11,2			0,35					58	2		29	1,12	5,43	0,898	
AOT2-41-4	3	1460	10,7/6,2			0,35					36	1		36	1,45	5,65	1,33	
AOK2-41-4	3	1410	11,6/6,7			0,35					36	1		36	1,45	5,65	1,33	
AO2-41-4-X	3	_	-			0,35					35	1		35	1,25	4,31	1,74	
АО2-41-4-Ш	3	1450	11,5/6,7			0,45					35	1		35	1,45	5,45	1,29	
AO2-41-4-60	4	_	_			0,35					58	2		29	1,12	5,43	0,894	
AO2-42-4	5,5	1450	19,3/11,1	208/133	148	0,35	36		Однослойная	3	48	2	-	24	1,25	6,32	0,675	26
ΑΟΠ2-42-4	5,5	1440	20,2/11,7			0,35		3–10			46	2		23	1,3	6,55	0,6	
AOC2-42-4	7,5	1350	27,4/15,8			0,35					44	2		22	1,3	6,27	0,572	
AOT2-42-4	4	1460	13,7/7,95			0,35					56	2		28	1,16	6,37	0,914	
AOK2-42-4	4	1420	15,4/8,8			0,35					52	2		26	1,2	6,5	0,8	

4,38

30

1.16

60

2,5

33

Ротор Статор Тип электро-P. 11, Dc/dc, δ, Диаметр мин-1 кВт двигателя G1 r1 Тип обмотки **z2** N_K1 Пэ1 M₁ aı W_K1 **Z**1 **y**1 провода мм мм MM 3 27 5.05 1.13 26 AO2-42-4-X 208/133 148 0.35 1-12; 2-11; Однослойная 27 1,45 4 1 3 - 1054 27 1.16 6.15 0.83 2 AO2-42-4-W 1450 14,8/8,55 0.45 1.3 6.27 0.572 0.35 44 2 22 AO2-42-4-60 5.5 110 0,35 1-8; 2-7 Однослойная 41 1.35 4.86 1.5 33 AO2-41-6 3 960 12.4/7.2 208/144 2 1 41 36 1.5 5.16 1.06 26 AOП2-41-6 3 955 15.4/8.9 0.35 1 36 4,61 72 2 36 1.0 1,19 AOC2-41-6 4 19,7/10,8 0.35 46 870 1.6 33 AOT2-41-6 2.2 970 9,4/5,43 0.35 44 1 44 1,35 5.1 1.35 5.34 1.68 27 AOK2-41-6 2,2 930 9,9/5,7 0.35 46 1 46 45 45 1.12 3.82 2.38 AO2-41-6-X 2.2 0.35 33 1.35 AO2-41-6-W 2,2 970 9,9/5,7 0.4 43 43 5.0 1.57 46 36 1.0 4.61 1.2 AO2-41-6-60 3 0.35 72 2 33 32 1.08 5,51 1.05 AO2-42-6 960 15.8/9.2 208/144 148 0.35 1-8: 2-7 Однослойная 2 64 2 33 4 5.56 0.797 АОП2-42-6 955 19,2/11 0.35 56 2 28 1.16 26 56 28 0.797 AOC2-42-6 21,2/12,2 0.35 2 1.16 5.56 46 4.7 870 1.56 6.7 1.07 AOT2-42-6 970 12,2/7,05 0.35 34 34 33 3 27 AOK2-42-6 3 940 13,1/7,6 0.35 66 2 33 1.12 6.1 1.0 3 0.35 34 34 1.35 4.79 1,43 33 AO2-42-6-X AO2-42-6-W 3 970 13/7,55 0,4 38 1 38 1.56 5.93 1.04 46 0.798 33 0,35 56 2 28 1.16 5.56 AO2-42-6-60 4 3.8 33 2,2 15.8/9.2 208/144 110 0.35 36 1-5 Двухслойная 1; 2; 1; 2; ... 52 26 1.16 2.18 AO2-41-8 630 1 АОП2-41-8 13/7,3 0.35 46 23 1,25 3.89 1.66 26 2.2 710 1.8 AOC2-41-8 15,8/9,2 0.35 46 23 1.2 3.61 46 3 630

1,5

730

AOT2-41-8

7,22/4,2

0.35

Ротор

двигателя	кВт	мин ⁻¹	A	Dc/dc,	L,	δ, мм	Z1	у	1 Тип	обмотки	N _K 1	Пэ1	m ₁	aı	W _K 1	Диаметр провода	G1	r <u>1</u>	z 2
AO2-41-8-X	1,5			208/144	110	0,35	36	1~	-5 Двух	слойная	1; 2; 1; 2;	56	1	-	28	0,96	3,01	3,42	33
АО2-41-8-Ш	1,5	720	7,9/4,6			0,4						60			30	1,16	4,38	2,5	46
AO2-41-8-60	2,2	_	-			0,35						46			23	1,2	3,61	1,8	33
AO2-42-8	3	7 20	14/8,1	208/144	148	0,35	36	1~	-5 Двух	слойная	1; 2; 1; 2;	80	2	_	20	0,9	4,15	1,64	33
АОП2-42-8	3	710	16,3/9,4			0,35						36	1		18	1,4	4,51	1,22	26
AOC2-42-8	3,5	630	18/10,4			0,35	Ì					36	1		18	1,35	4,18	1,31	46
AOT2-42-8	2,2	730	10,35/6			0,35						44	1		22	1,35	5,1	1,6	33
AO2-42-8-X	2,2	_	_			0,35						42	1		21	1,12	3,61	2,24	33
АО2-42-8-Ш	2,2	720	11,4/6,6			0,4						42	1		21	1,4	5,26	1,33	46
				Ī			1					24		1			4.00	4 4 5	33
AO2-42-8-60	3 Ta6	_ Глица 8	 8.6. Обмол	почные с	анны	0,35 не элекі					uu A2 u AO2 B	34 u ux	моди	фика	17 140ŭ \$	1,4 5-го габар	4,26 ouma	1,15	33
	Ta6	ілица 8		почные с	Эанны				пелей еди пряжение :	220/380			моди	фика				1,15	
			- 8.6. Обмоп I ₁ , А	ПОЧНЫЕ С Dc/dc, мм)анны L, мм					(220/380	В Статор		м оди	ф ика				1,15	
Тип электро- двигателя	Та б Р,	<i>блица 8</i>	l ₁ ,	Dc/dc,	L,	ве элекі		на нап	ряжение :	220/380	В Статор п _{к1} г	u ux			пций \$	5-го габар Диаметр	ouma		Ротор
Тип электро- двигателя AO2-51-2	<i>Таб</i> Р, кВт	п, мин ⁻¹	l ₁ , A	Dc/dc,	L, MM	ве элекі δ, мм	Z1	у;	тип обмоти	220/380	В Статор пк1 г 4 1	u ux	m ₁	a ₁	w _{k1}	Диаметр провода	G1	r1	Ротор
Тип электро- двигателя AO2-51-2 AOC2-51-2	Таб Р, кВт	п, мин ⁻¹	I ₁ , A	Dc/dc,	L, MM	ве элекі δ, мм	Z1	у;	тип обмоти	220/380	В Статор пк1 г 4 1 1	<i>u ux</i>	m ₁	a ₁	ж к1	Диаметр провода 1,25	G1 10,7	r1 0,287	Ротор
Тип электро- двигателя AO2-51-2 AOC2-51-2 AO2-51-2-X	Таб Р, кВт 10	п, мин ⁻¹ 2900 2760	I ₁ , A	Dc/dc,	L, MM	ве элекі δ, мм	Z1	у;	тип обмоти	220/380	В Статор пк1 г 4 1	u ux 00 00	m ₁ 2 2	a ₁	W _K 1 25 25	Диаметр провода 1,25	G1 10,7 10,7	r1 0,287 0,287	Ротор
Тип электро- двигателя AO2-51-2 AOC2-51-2 AO2-51-2-X AO2-51-2-60	7a6 P, κΒτ 10 10 7,5	п, мин ⁻¹ 2900 2760	I ₁ , A	Dc/dc,	L, MM	ве элекі δ, мм	Z1	у;	тип обмоти	и	В Статор пк1 г 4 1 1	00 00 56	m ₁ 2 2 1	a ₁	W _K 1 25 25 28	Диаметр провода 1,25 1,25	G1 10,7 10,7 9,1	r1 0,287 0,287 0,444	Ротор
Тип электро- двигателя AO2-51-2 AOC2-51-2 AO2-51-2-X AO2-51-2-60 AO2-52-2	P, κΒτ 10 10 7,5	п, мин ⁻¹ 2900 2760	29,8/17,2 39,6/23 —	Dc/dc, MM 243/140	L, мм 135	δ, мм 0,7	21	у:	Тип обмоты Двухслойна	и	В Статор пк1 г 4 1 1 2 4 4 1	00 00 56 38	m ₁ 2 2 1 2	a ₁	w к1 25 25 28 22	Диаметр провода 1,25 1,25 1,5	G1 10,7 10,7 9,1	r1 0,287 0,287 0,444 0,217	Ротор z2 20
Тип электро-	P, KBT 10 10 7,5 10 13	п, мин ⁻¹ 2900 2760 — 2900	1 ₁ , A 29,8/17,2 39,6/23 - - 43,5/25,2	Dc/dc, MM 243/140	L, мм 135	δ, мм 0,7	21	у:	Тип обмоты Двухслойна	и	Β CTATOP 0 1 1 1 4 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 3 4 1 1 2 2 3 4 1 1 2 2 3 4 1 2 4 1 2 4 1 2 4 1 2 4 1 1 2 4 1 2 4 1 2 4 1 2 3 4 <td>00 00 56 38 20</td> <td>m₁ 2 2 1 2 3</td> <td>a₁</td> <td>W_K1 25 25 28 22</td> <td>Диаметр провода 1,25 1,25 1,5 1,35 1,16</td> <td>G1 10,7 10,7 9,1 11 12,1</td> <td>r1 0,287 0,287 0,444 0,217 0,194</td> <td>Ротор z2 20</td>	00 00 56 38 20	m ₁ 2 2 1 2 3	a ₁	W _K 1 25 25 28 22	Диаметр провода 1,25 1,25 1,5 1,35 1,16	G1 10,7 10,7 9,1 11 12,1	r1 0,287 0,287 0,444 0,217 0,194	Ротор z2 20

Тип электро-

Ρ,

n,

lţ,

Статор

5,95 1,23

1,27

4,9

45

46

19

17

1,5

1,4

Tun 2-20	_	_								Статор								Ротор
Тип электро- двигателя	P, ĸBt	п, мин ⁻¹	I ₁ ,	Dc/dc,	Ĺ, MM	δ, мм	Z 1	y 1	Тип обмотки	n _k †	Пэt	m ₁	aı	W _K †	Диаметр провода	G1	r1	z2
AO2-51-4	7,5	1450	25,6/14,8	243/158	135	0,45	36	1-8	Двухслойная	3	52	2		13	1,35	7,45	0,587	26
АОП2-51-4	7,5	1450	27,3/15,8			0,45					44			11	1,5	7,75	0,4	26
AOC2-51-4	9,4	1350	34,6/20			0,45					44	1.		11	1,5	7,75	0,4	46
AOT2-51-4	5,5	1460	18,6/10,7			0,45					56			14	1,3	7,45	0,68	26
AOK2-51-4	5,5	1420	21,2/12,3			0,45					52			13	1,35	7,4	0,59	48
AO2-51-4-X	5,5	_	_			0,45					56			14	1,16	6,3	0,85	26
АО2-51-4-Ш	5,5	1450	17,5/10,1			0,55					60			15	1,25	7,35	0,788	46
AO2-51-4-60	7,5	_				0,45					48			12	1,4	7,4	0,504	26
AO2-52-4	10	1450	34/19,7	243/158	170	0,45	36	1-8	Двухслойная	3	60	3		10	1,25	8,2	0,39	26
АОП2-52-4	10	1440	36/20,8			0,45					54	3		9	1,35	8,6	0,3	26
AOC2-52-4	12	1350	43,7/25,2			0,45					54	3		9	1,35	8,6	0,3	46
AOT2-52-4	7,5	1460	25,6/14,8			0,45					66	3		11	1,2	8,4	0,468	26
AOK2-52-4	7,5	1420	28,5/16,4			0,45					60	3		10	1,25	8,2	0,39	18
AO2-52-4-X	7,5	_	_			0,45					44	2		11	1,25	6,4	0,645	26
АО2-52-4-Ш	7,5	1450	25,4/14,7			0,55					48	2		12	1,45	8,8	0,623	46
AO2-52-4-60	10	_	_			0,45					54	3		9	1,3	8,0	0,324	26
AO2-51-6	5,5	970	20,8/12	243/173	135	0,4	36	1-6	Двухслойная	2	60	2	_	15	1,16	5,65	0,812	46
АОП2-51-6	5,5	955	23,1/13,4			0,4					56	2		14	1,25	6,1	0,653	26
AOC2-51-6	7	890	29/16,7			0,4					56	2		14	1,2	5,7	0,71	46
AOT2-51-6	4	970	14,9/8,65			0,4					64	2		16	1,16	6,05	0,865	46

38

34

AOK2-51-6

AO2-51-6-X

4

955

16,9/9,8

0,4

0,4

T 0.00.										Статор								Ротор
Тип электро- двигателя	P, kBt	п, мин ⁻¹	l ₁ , A	Dc/dc,	L,	δ, мм	Zį	У †	Тип обмотки	n _{k1}	N ₃₁	m ₁	a ₁	W _K ţ	Диаметр провода	G1	r1	z2
A O2-51-6-Ш	4	975	16/9	243/173	135	0,5	36	1-6	Двухслойная	. 2	34	1	-	17	1,62	6,25	0,946	46
AO2-51-6-60	5,5	_	_			0,4					52	2		13	1,25	5,7	0,606	46
AO2-52-6	7,5	970	27,5/15,9	243/173	190	0,4	36	1-6	Двухслойная	2	44	2	_	11	1,4	7,25	0,493	46
АОП2-52-6	7,5	955	30,6/17,6		,	0,4					40	2		10	1,5	7,5	0,387	26
AOC2-52-6	9	890	36/21			0,4					40	2		10	1,45	7,05	0,418	46
AOT2-52-6	5,5	970	20,2/11,7			0,4					48	2		12	1,3	6,8	0,623	46
AOK2-52-6	5,5	955	22,7/13			0,4					52	2		13	1,25	6,85	0,73	45
AO2-52-6-X	5,5	_				0,4					24	1		12	1,62	5,55	0,805	46
A O2-52-6-Ш	5,5	975	22/12			0,5					52	2		13	1,3	5,4	0,675	46
AO2-52-6-60	7,5	_				0,4					40	2		10	1,45	7,05	0,418	46
AO2-51-8	4	725	17/10	243/173	135	0,4	36	1-5	Двухслойная	1; 2; 1; 2;	68	2	-	17	1,12	5,65	0,935	46
АОП2-51-8	4	710	20,7/11,9			0,4					32	1		16	1,62	5,6	0,84	26
AOC2-51-8	5	660	24,2/14		,	0,4					64	2		16	1,16	5,7	0,82	46
AOT2-51-8	3	730	13,4/7,75			0,4					76	2		19	1,04	5,45	1,21	46
AOK2-51-8	3	710	14,4/8,3	,		0,4					46	1		23	1,35	5,5	1,74	48
AO2-51-8-X	3	_	-			0,4					40	1		20	1,25	4,4	1,76	46
АО2-51-8-Ш	3	725	15/9		,	0,5					40	1		20	1,5	5,9	1,26	46
AO2-51-8-60	4	_	_			0,4					60	2		15	1,16	5,35	0,766	46
A O2- 5 2-8	5,5	725	24/14	243/173	190	0,4	36	1-5	Двухслойная	1; 2; 1; 2;	52	2	_	13	1,25	6,5	0,695	46
А ОП2-52-8	5 ,5	710	27,4/15,8			0,4					48	2		12	1 ,35	7,0	0,55	26
AOC2-52-8	6,4	660	30,1/17,4			0,4					48	2		12	1,3	6,5	0,593	46
AOT2-52-8	4	730	17,6/10,6			0,4					60	2		15	1,2	6,95	0,873	46

T.,		_						***************************************		Статор								Ротор
Тип электро- двигателя	P, ĸBτ	п, мин ⁻¹	1 ₁ , A	Dc/dc,	L,	δ, мм	Zį	У1	Тип обмотки	N _K †	Пэт	M ₁	a ₁	W _K †	Диаметр провода	G1	r1	z2
AOK2-52-8	4	710	18,5/10,6	243/173	190	0,4	36	1-5	Двухслойная	1; 2; 1; 2;	68	2	_	17	1,08	6,4	1,22	48
AO2-52-8-X	5		_			0,4					30	1		15	1,5	5,7	1,11	46
АО2-52-8-Ш	4	725	19/11			0,5					60	2		15	1,2	6,95	0,875	46
AO2-52-8-60	5,5	_				0,4					48	2		12	1,3	6,5	0,594	46
	Табл	пица 8	.7. Обмоп	точные д	анные	е элекг	•		пелей единов пряжение 220		NO2 u ux	моди	.фика	аций б	Э-го габар	ouma		1
Тип электро-	Р,	n,	l ₁ ,				·			Статор		_			1		1	Ротор
двигателя	кВт	MNH-1	A	Dc/dc,	L, MM	δ, мм	Zi	У1	Тип обмотк	(И П _К 1	n ₃ †	m;	a;	WKţ	Диаметр провода	G1	r1	z2
A2-61-2	17	2900	57,5/33,2	291/153	.110	0,7	36	1-1	12 Двухслойна	я 6	60	2	2	15	1,4	11,1	0,19	28
A2-61-2-60	17	-	_								56			14	1,4	10,3	0,177	
A2-62-2	22	2900	73,5/42,5	291/153	135	0,7	36	1-1	12 Двухслойна	1я 6	52	2	2	13	1,5	11,75	0,154	28
A2-62-2-60	22				135						48			12	1,5	10,8	0,142	
AO262-2	17	2900	56,3/32,5		150						52			13	1,45	11,4	0,171	
AO2-62-2T	13				150						60			15	1,16	9,2	0,307	
AO2-62-X	13				150						60			15	1,16	9,2	0,307	
AO2-62-2-60	17				150						48			12	1,45	10,6	1,158	
A2-61-4	13	1450	43,8/25,3	291/180	120	0,55	36	1-	8 Двухслойна	я 3	80	2	2	20	1,25	10,15	0,27	46
A2- 61-4-60	13				120						76	2	_	19	1,25	9,3	0,257	46
AO2-61-4	13	1450	43/25		135						76	2		19	1,25	10,0	0,268	46
АОП2-61-4	13	1440	46,2/26,7		135	_					72	2		18	1,3	10,25	0,235	26
AOC2-61-4	14,5	1350	52,3/30,2		135						68	2_		17	1,35	10,4	0,206	46
AOT2-61-4	10	1460	34/19,6		135						76	2		19	1,3	10,8	0,249	46

-																		
Тип электро двигателя	Р, кВт	л, мин ⁻¹	I ₁ ,	Dc/dc,	L,	δ, мм	Zį	y 1	Тип обмотки	N _K 1	N ₃₁	m ₁	a ₁	W _K †	Диаметр провода	G1	r1	z 2
AOK2-61-4	10	1420	37,6/21,6	291/180	135	0,55	36	1-8	Двухслойная	3	76	2	2	19	1,25	9,82	0,28	46
AO2-61-4-T	10	_	_		135						40	1		20	1,56	8,7	0,364	46
AO2-61-4-X	10	_			135						40	1		20	1,56	8,7	0,364	46
AO2-61-4-60	13	_	_	,	135						72	2		18	1,25	9,6	0,225	46
A2-62-4	17	1450	56,5/32,7	291/180	150	0,55	36	1-8	Двухслойная	3	64	2	2	16	1,4	11,1	0,189	46
A2-62-4-60	17	_	_		150						60			15	1,4	10,0	0,177	46
AO2-62-4	17	1450	56,5/32,6		165						6 0			15	1,4	10,85	0,185	46
АОП2-62-4	17	1440	60,5/35		165						56			14	1,45	10,9	0,161	26
AOC2-62-4	18,5	1350	66/38,1		165						52			13	1,5	10,8	0,14	46
AOT2-62-4	13	1460	43,3/25		165						64			16	1,4	11,5	0,198	46
AOK2-62-4	13	1420	48,4/28		165						6 0			15	1,45	11,6	0,172	46
AO2-62-4-T	13	_	_		165						64			16	1,16	8,65	0,288	46
AO2-62-4-X	13	_	-		165						64			16	1,16	8,06	0,288	46
AO2-62-4-60	17	-	_		165						56			14	1,4	10,2	0,173	46
A2-61-6	10	965	35/20,3	291/206	120	0,4	54	1-8	Двухслойная	3	38	1	2	19	1,5	8,87	0,464	64
A2-61-6-60	10	_	_		120						36	1		18	1,5	8,5	0,442	64
AO2-61-6	10	970	33,6/19,4		150						34	1		17	1,56	9,65	0,425	64
АОП2-61-6	10	970	36,8/21,3		150						64	2		16	1,12	9,45	0,392	42
AOC2-61-6	12,5	900	46/26,8		150						6 0	2		.15	1,16	9,5	0,344	64
AOT2-61-6	7,5	970	26,2/15,1		150						36	1		18	1,56	10,2	0,455	64
AOK2-61-6	7,5	960	28,6/16,5		150						36	1		18	1,5	10,0	0,495	36

150

AO2-61-6-T

7,5

Статор

38

19

1,3

0,69

8,1

9,1

19

1,45

38

0,535

7	_ n	_								Статор								Ротор
Тип электро- двигателя	Р, кВт	п, мин ⁻¹	l ₁ ,	Dc/dc,	L,	δ, мм	Z 1	уı	Тип обмотки	n _{k1}	N ₃ †	m;	a _t	Wki	Диаметр провода	G1	r1	z2
AO2-61-6-X	7,5	_	_	291/206	150	0,4	54	1-8	Двухслойная	3	38	1	2	19	1,3	8,1	0,69	64
AO2-61-6-60	10				150						32	1		16	1,56	9,3	0,405	64
A2-62-6	13	965	45/26,1	291/206	165	0,4	54	1-8	Двухслойная	3	56	2	2	14	1,25	10,75	0,287	64
A2-62-6-60	13	_	_		165						52	2		13	1,25	10,5	0,268	64
AO2-62-6	13	970	43,5/25,2		190						52	2		13	1,25	10,8	0,290	64
АОП2-62-6	13	970	47,5/27,4		190						48	2		12	1,3	10,8	0,247	42
AOC2-62-6	15,5	900	52,2/33,2		190						48	2		12	1,3	10,8	0,247	64
AOT2-62-6	10	970	34,6/20		190						56	2		14	1,25	11,6	0,313	64
AOK2-62-6	10	960	37,2/21,4		190						56	2		14	1,2	11,1	0,34	36
AO2-62-6-T	10		_		190						28	1		14	1,45	8,3	0,465	64
AO2-62-6-X	10	_	_		190		İ				28	1		14	1,45	8,8	0,465	64
AO2-62-6-60	13	_	_		190						52	2		13	1,25	10,8	0,29	64
A2-61-8	7,5	725	29,7/17,2	291/206	120	0,4	54	1-7	Двухслойная	2; 2; 2; 3; 2;	44	1	2	22	1,4	8,71	0,591	64
A2 -61-8-60	7,5	_	_		120						42	1		21	1,4	8,3	0,565	64
AO2-61-8	7,5	725	28/16		150						40	11		20	1,45	9,56	0,562	64
AOΠ2-61-8	7,5	720	32/18,5		150						38	1		19	1,45	10,0	0,535	42
AOC2-61-8	10	6 60	40,7/23,6		150						68	2		17	1,56	9,38	0,413	64
AOT2-61-8	5,5	730	21,7/12,5		150						42	1		21	1,45	11,0	0,592	64
AOK2-61-8	5,5	710	24,4/14,1		150						42	1		21	1,4	9,6	0,645	36
AO2-61-8-T	5,5				150						44	1		22	1,16	7,3	0,965	64
AO2-61-8-X	5,5	_			150						44	1		22	1,16	7,3	0,965	64

150

AO2-61-8-60 7,5

Ротор

Тип электро- двигателя	Р, кВт	п, мин ⁻¹	11, A	Dc/dc,	L, MM	δ, мм	Z ₁	y 1	Тип обмотки	n _{k1}	n ₃ †	m ₁	aı	WKI	Диаметр провода	G1	r1	z2
A2-62-8	10	725	38,2/22,1	291/206	165	0,4	54	1-7	Двухслойная	2; 2; 2; 3; 2;	64	2	2	16	1,2	11,12	0,344	64
A2-62-8-60	10	-	_		165						60	2		15	1,2	10,4	0,324	64
AO2-62-8	10	725	36/21		190						60	2		15	1,2	11,1	0,352	64
ОП2-62-8	10	720	41,6/24		190						60	2		15	1,16	11,65	0,375	42
AOC2-62-8	12,5	660	49,2/28,5		190						60	2		15	1,16	10,35	0,375	64
NOT2-62-8	7,5	730	29,4/17		190						64	2		16	1,16	12,4	0,4	64
OK2-62-8	7,5	710	32,8/19		190						32	1		16	1,62	11,0	0,398	36
AO2-62-8-T	7,5	-	-		190						34	1		17	1,3	8,0	0,675	64
AO2-62-8-X	7,5	_	_		190						34	1		17	1,3	8,0	0,675	64
AO2-62-8-60	10	-	_		190						56	2		14	1,2	10,4	0,33	64

Статор

		•					•	на на	пряжение 22				•	•		•		
Turk										Статор		****						Ротор
Тип электро- двигателя	P, kBt	п, мин ⁻¹	l ₁ ,	Dc/dc,	L,	δ, м	Z ₁	У1	Тип обмотки	N _{K1}	Na1	m ₁	aı	W _K 1	Диаметр провода	G1	r1	z2
A2-71-2	30	2900	97,2/56,2	343/183	115	0,85	36	1–12	Двухслойная	6	72	3	2	12	1,4	14,9	0,117	28
A2-71-2-60	30	-			115						60	3		10	1,56	15,9	0,078	
A02-71-2	22	2900	72,8/42,1		130						75	2		12 и 13	1,35	14,9	0,135	
AO2-71-2T	17	-	_		130						56	2		14	1,4	11,9	0,209	
A02-71-2-X	17	_	_		130						56	2		14	1,4	11,9	0,209	
AO-71-2-60	22	-	-		130						66	3		11	1,45	15,3	0,102	

0,154

0,229

0,229

0,086

0,086

0,067

0,08

0,0817

0,0817

0,108

14,7

11,2

12,1

14,8

15,2

15,6

16,5

16,0

16,0

18,3

1,3

1,35 1,35

1,5

1,5

1,62

1,56

1,62

1,62

1,5

2

2

2

2

2

2

2

14

15

15

11

11

10

10

9

9

12

3

2 2

3 2

3

3

3

3

84

60

60

66

66

60

60

54

54

72

3

24

46

46

46

46

26

46

46

_									,	Статор								Ротор	
Тип электро- двигателя	P, ĸBτ	п, мин ⁻¹	l ₁ , A	Dc/dc,	L,	δ, м	Zį	y ₁	Тип обмотки	NKI	Пэт	m ₁	aı	W _K †	Диаметр провода	G1	r1	z2	
A2-72-2	40	2900	129/74,5	343/183	150	0,85	36	1-12	Двухслойная	6	54	3	2	9	1,62	16,3	0,077	28	
A2-72-2-60	40	_	-		150						64	4		8	1,5	16,5	0,055		
AO2-72-2	30	2900	98/56,8		165						57	3		9 и 10	1,56	16,3	0,0827		
AO2-72-2T	22		_		165						48	2		12	1,45	11,8	0,181		
AO2-72-2-X	22	_	_		165						48	2		12	1,45	11,8	0,181		
AO-72-2-60	30	-	_		165						64	4		9	1,50	17,3	0,058		
A2-71-4	22	1455	72,7/42	343/214	115	0,7	36	1-8	Двухслойная	3	6 0	2	2	15	1,56	13,2	0,15	46	
A2-71-4-60	22	_	-		115						106	4	2	13	1,2	13,0	0,104	46	
AO2-71-4	22	1455	71,5/41,2		165						110	2	4	15	1,2	14,8	0,12	46	
АОП2-71-4	22	1450	77,4/44,77		165						66	3	2	11	1,5	15,2	0,09	26	
AOC2-71-4	22	1400	77,5/44,7		165						72	3	2	12	1,45	15,4	0,106	46	
AOT2-71-4	17	1460	56/32,4		165						84	3	2	14	1,35	15,6	0,143	46	
		+		1		-1	1	1	1								1		

	22	1450	77,4/44,7
_	22	1400	77,5/44,7
	17	1460	56/32,4
	17	1430	61,1/35,1
	17	-	-
	17	_	_

1455

1455

1450

1400

1460

99/57,3

95/55

105/60,7

94/54,5

71/41,1

22

30

30

30

30

27

22

165

165

165

165

165

165

205

205

205

205

0,7

1~8

Двухслойная

36

343/214

AOK2-71-4

AO2-71-4-T

AO2-71-4-X

AO2-71-4-60

A2-72-4

A2-72-4-60

AO2-72-4

АОП2-72-4

AOC2-72-4

AOT2-72-4

T					***************************************					Статор								Ротор
Тип электро- двигателя	P, KBT	п, мин ⁻¹	l ₁ , A .	Dc/dc,	L,	δ, M	Zŧ	y ₁	Тип обмотки	N _K 1	Пэ1	m ₁	aı	W _K 1	Диаметр провода	G1	ŗ1	z2
AOK2-72-4	22	1430	78,5/45,2	343/214	205	0,7	36	1-8	Двухслойная	3	66	3	2	11	1,5	15,8	0,1	24
A02-72-4-T	22	-	_		205						48	2	2	12	1,56	13,1	0,152	46
A02-72-4-X	22	_	_		205						48	2	2	12	1,56	13,4	0,152	46
AO2-72-4-60	30	_	-		205						108	3	4	9	1,2	16,1	0,057	46
A2-71-6	17	965	57,5/33,2	343/245	130	0,5	54	1-8	Двухслойная	3	56	2	2	14	1,35	12,5	0,253	64
A2-71-6-60	17	-	_		130						48	2		12	1,5	13,3	0,175	64
AO2-71-6	17	970	55,3/32		165						48	2		12	1,45	13,5	0,207	64
АОП2-71-6	17	970	61,6/35,6		165						44	2		11	1,5	13,2	0,176	42
AOC2-71-6	19	930	68,3/39,6		165						68	2		17	1,2	13,1	0,189	64
AOT2-71-6	13	970	43,4/25		165						52	2		13	1,4	13,6	0,239	64
AOK2-71-6	13	960	47,2/27,2		165						56	2		- 14	1,35	13,6	0,3	36
AO2-71-6-T	13				165						28	1		14	1,62	9,8	0,385	64
AO2-71-6-X	13				165						28	1		14	1,62	9,8	0,385	64
AO2-71-6-60	17	- .	-		165						40	2		10	1,35	13,8	0,134	64
A2-72-6	22	965	74,3/43	343/245	165	0,5	54	1–8	Двухслойная	3	44	2	2	11	1,56	14,3	0,164	64
A2-72:6-60	22	_			165						60	3	2	10	1,35	14,6	0,133	64
AO2-72-6	22	970	71/41		205						40	2	2	10	1,62	15,5	0,154	64
АОП2-72-6	22	970	77,8/45		205						54	3	2	9	1,35	14,6	0,132	42
AOC2-72-6	23	930	82/47,5		205						56	2	3	14	1,3	14,1	0,154	64
AOT2-72-6	17	970	56,2/32,5		205						42	2	.2	<u>10 и 11</u>	1,56	15,2	0,173	64
AOK2-72-6	17	960	60,2/34,7		205						44	2	2	11	1,5	14,7	0,198	36

A02-72-6-T

17

1,3

11,0 0,261

		_	١.							Статор								Ротор	
Тип электро- двигателя	P, kBT	п, мин ⁻¹	I ₁ , A	Dc/dc,	L,	δ, м	Zı	y 1	Тип обмотки	n _{k1}	Пэ1	m ₁	a ₁	W _K 1	Диаметр провода	G1	r1	z2	
A02-72-6-X	17	-	_	343/245	205	0,5	54	1-8	Двухслойная	3	44	2	2	11	1,3	11,2	0,261	64	
AO2-72-6-60	22	_			205						54	3	2	9	1,4	15,2	0,118	64	
A2-71-8	13	72 5	47,5/27,5	343/245	130	0,5	54	1-7	Двухслойная	2; 2; 2; 3; 2;	64	2	2	16	1,25	11,3	0,31	64	
A2-71-8-60	13	_	_		130						56	2		14	1,4	12,5	0,217	64	- 1
AO2-71-8	13	72 5	48/27		165						60	2		15	1,3	12,7	0,302	64	
Α ΟΠ2 - 71-8	13	730	53,8/31,1		165						52	2		13	1,4	12,8	0,225	42	
AOC2-71-8	15	700	58/21,9		165						56	2		14	1,35	12,8	0,263	64	
AOT2-71-8	10	730	38/21,9		165						60	2		15	1,3	12,7	0,301	64	
AOK2-71-8	10	715	43/24,8		165						64	2		16	1,25	12,7	0,35	36	
AO2-71-8-T	10				165						32	1		16	1,56	9,8	0,448	64	
AO2-71-8-X	10				165						32	1		16	1,56	9,75	0,447	64	
AO2-71-8-60	13	_	-	'	165						48	2	_	12	1,45	13	0,195	64	- .
A2-72-8	17	725	61,5/35,6	343/245	165	0,5	54	1-7	Двухслойная	2; 2; 2; 3; 2;	52	2	2	13	1,4	13,0	0,226	64	
A2-7 2-8-60	17				165						44			11	1,56	13,7	0,154	64	
AO2-72-8	17	72 5	60/35		205						44			11	1,50	13,9	0,186	64	
АОП2-72-8	17	730	70/40,4		205						40			10	1,56	13,7	0,156	42	
AOC2-72-8	18	700	68/39,3		205						44	- 		11	1,50	13,9	0,186	64	
AOT2-72-8	13	730	47,5/27,4		205						48			12	1,50	15,2	0,203	64	
AOK2-72-8	13	715	55,4/32		205						5 2			13	1,40	14,4	0,255	36	
AO2-72-8-T	13	_			205						52			12	1,25	10,6	0,292	64	
AO2-72-8-X	13				205						52			12	1,25	10,6	0,292	64	
AO2-72-8-60	17	_	_		205						40			11	1,62	14,7	0,142	64	

Таблица 8.9. Обмоточные данные электродвигателей единой серии A2 и AO2 и их модификаций 8-го габарита на напряжение 220/380 В

		- TOTAL							Ста	тор								Ротор
Тип электро- двигателя	P, ĸBt	л, мин ⁻¹	i _t , A	Dc/dc,	L,	δ, мм	Z 1	y 1	Тип обмотки	n _{k1}	N ₃₁	m ₁	aı	Wkt	Диаметр провода	G1	r1	z 2
A2-81-2	55	2900	177/102	393/211	140	1,0	36	1-12	Двухслойная	6	85	_5_	2	9 и 8	1,5	25,1	0,054	28
A2-81-2-60	55		-		140						70	_5		7	1,62	24,1	0,0378	
AO2-81-2	40	2920	129/74,8		170						85	5		8и9_	1,5	26,6	0,0569	
A02-81-2-T	30	2935	98,5/57		170						66	3		11	1,5	23,5	0,122	
AO2-81-2-X	30	2935	98,5/57		170						6 6	3		11	1,5	22,5	0,122	
AO2-81-2-60	40		_		170						70	5		7	1,62	25,2	0,0496	
A2-82-2	75	2900	214/124	393/211	190	1,0	36	1-12	Двухслойная	6	78	6	2	6и7	1,56	27,4	0,0347	28
A2-82-2-60	75	_	_		190						77	7		5 и 6	1,56	27,4	0,0252	
AO2-82-2	55	2920	175/101		210						70	5		7	1,62	27,3	0,0432	
AO2-82-2-T	40	2940	127/73		210						54	3		9	1,62	23,1	0,0920	
AO2-82-2-X	40	2940	127/73		210						54	3		9	1,62	23,1	0,0920	
AO2-82-2-60	55	_	-	,	210						72	6		9	1,62	29,1	0,0309	
A2-81-4	40	1460	130/75	393/247	140	0,9	48	1-11	Двухслойная	4	68	2	4	17	1,56	24,1	0,0692	58
A2-81-4-60	40				140						64	2	4	16	1,56	23,3	0,0664	58
AO2-81-4	40	1460	125/72,7		190						60	2	4	15	1,62	25,7	0,0631	58
АОП2-81-4	40	1470	133/76,9		190						70	5	2	7	1,5	26,8	0,0566	. 38
AOC2-81-4	40	1400	135,5/78,4		160			,			78	3	4	13	1,4	26,0	0,0504	58
AOT2-81-4	40	1440	139/80,4		190						64	2	4	16	1,56	25,7	0,0725	60
AOK2-81-4	30_	1450	107/61		190						64	2	4	16	1,56	25,7	0,0725	60
AO2-81-4-T	30	1470	95/55		190						. 54	3	2	9	1,5	22,4	0,119	58
AO2-81-4-X	30	1470	95/55		190						54	3	2	9	1,5	22,4	0,119	58

.		_							Ста	тор								Ротор
Тип электро- двигателя	Р, кВт	п, мин ⁻¹	l ₁ ,	Dc/dc,	L,	δ, мм	Zı	y 1	Тип обмотки	N _K 1	N ₃₁	m ₁	a ₁	W _K 1	Диаметр провода	G1	r1	
AO2-81-4-60	40	_	_	393/247	190	0,9	48	1-11	Двухслойная	4	78	3	4	13	1,45	27,2	0,0466	58
A2-82-4	50	1460	176/1-2	393/247	190	0,9	48	1-11	Двухслойная	4	78	3	4	13	1,45	26,6	0,0456	58
A2-82-4-60	5 5	-	_		190						66	3		11	1,56	2 6,7	0,0840	58
AO2-82-4	5 5	1460	170/98		260						66	3		11	1,56	29,8	0,0380	58
АОП2-82-4	55	1470	183/105,8		245						80	4		10	1,45	32,4	0,0306	38
AOC2-82-4	47	1 400	155/88,6		260						66	3		11	1,50	28,6	0,0419	58
AOT2-82-4	55	1440	190/109,5		260						66	3		11	1,56	30,6	0,039	60
AOK2-82-4	40	1 4 5 0	140/80,8		260						66	3		11	1,56	30,6	0,039	60
AO2-82-4-T	40	1470	127/73		260					-	56	2		14	1,45	24,7	0,0860	58
AO2-82-4-X	40	1470	127/73		260						56	2		14	1,45	24,7	0,0860	58
AO2-82-4-60	55	_	-		260						72	4		9	1,5	30,7	0,0257	58
A2-81-6	30	970	99,3/57,5	393/285	1 40	0,6	72	1-11	Двухслойная	4	50	1	6	2 5	1,5	20,7	0,123	82
A2-81-6-60	30	-	-		1 40	~		-			42	1	6	21	1,62	20,6	0,0897	82
AO2-81-6	30	980	95/55		190						42	3	2	7	1,62	23,0	0,101	82
АОП2-81-6	30	970	101/58,4		190						60	3	3	10	1,35	23,9	0,095	58
AOC2-81-6	33	930	114/66,5		190				-		60	3_	3	10	1,35	23,9	0,0948	82
AOT2-81-6	30	960	105,5/61		190						60	3	3	10	1,35	23,4	0,092	81
AOK2-81-6	22	965	77,6/43,8		190						42	3	2	7	1,62	23,0	0,10	81
AO2-81-6-T	22	980	70/40,5		190						52_	2	3	13	1,25	19,5	0,214	82
AO2-81-6-X	22	980	70/40,5		190						52	2	3	13	1,25	19,5	0,214	82
AO2-81-6-60	30	_			190						48	3	3_	8	1,5	22,8	0,0605	82
A2 -82-6	40	970	130/75	393/285	190	0,6	72	1-11	Двухслойная	4	60	3	3	10	1,35	22,6	0,09	82
A2-82-6-60	40	-	-		190						48	3	3	8	1,5	22,9	0,0604	82

-									Ста	тор					_			Ротор
Тип электро- двигателя	P, ĸBτ	п, мин ⁻¹	l ₁ ,	Dc/dc,	L,	δ, мм	Z1	y 1	Тип обмотки	n _K I	Not	m ₁	a ₁	Wki	Диаметр провода	G1	r1	z2
AO2-82-6	40	980	126/73	393/285	260	0,6	72	1-11	Двухслойная	4	48	3	3	8	1,5	26,4	0,0696	82
АОП2-82-6	40	970	134/77,3		260						60	2	6	15	1,4	29,8	0,0576	58
AOC2-82-6	40	930	136/78,5		260						90	3	6	15	1,35	27,8	0,0621	82
AOT2-82-6	40	960	139/80,4		260						60	2	6	15	1,35	27,0	0,0605	84
AOK2-82-6	30	965	104,5/60,4		260						48	3	3	8	1,5	26,3	0,0695	84
A02-82-6-T	30	980	95/55		260						40	2	3	10	1,45	23,4	0,142	82
AO2-82-6-X	30	980	70/40,5		260						40	2	3	10	1,45	23,4	0,142	82
AO2-82-6-60	40		-		260						42	3	3	7	1,62	27,2	0,053	82
A2-81-8	2,2	725	79,3/45,8	393/285	140	0,6	72	1-8	Двухслойная	3	42	1	4	21	1,62	18,0	0,177	82
A2-81-8-60	22	-	_		140						68	2	4	17	1,25	18,1	0,126	82
AO2-81-8	22	730	76/44		190						54	3	2	9	1,4	20,0	0,157	82
АОП2-81-8	22	735	79,2/45,8		190						68	2	4	17	1,25	21,9	0,128	58
AOC2-81-8	27,5	700	103,5/60		190						64	2	4	16	1,35	22,2	0,1116	82
AOT2-81-8	22	720	83,6/48,4		190						54	3	2	9	1,40	20,3	0,157	84
AOK2-81-8	17	725	71,5/41,3		190						54	3	2	9	1,40	20,3	0,157	84
AO2-81-8-T	17	735	58,2/34		190						40	2	2	10	1,45	18,3	0,248	82
A02-81-8-X	17	735	58,2/34		190						40	2	2	10	1,45	18,3	0,248	82
AO2-81-8-60	22	_	_		190						48	3	2	8	1,45	19,2	0,1031	82
A2-82-8	30	725	104/60,2	383/285	190	0,6	72	1-8	Двухслойная	3	48	3	2	8	1,56	22,0	0,112	82
A2-82-8-60	30	-	-		190						42	3	2	7	1,62	21,0	0,092	82
AO2-82-8	30	730	99/57		260						42	3	2	7	1,62	24,7	0,107	82
АОП2-82-8	30	735	106/61,2		260	1					78	3	4	13	1,2	25,5	0,0907	58
AOC2-82-8	33	700	123/71,3		260						48	2	4	12	1,56	26,4	0,0744	82

			_		····				Ста	тор								Ротор
Тип электро- двигателя	P, ĸBt	п, мин ⁻¹	l ₁ ,	Dc/dc,	L,	δ, м м	21	y 1	Тип обмотки	Пк1	П31	m ₁	aı	W _K 1	Диаметр провода	G1	r1	z 2
AOT2-82-8	30	720	114/65,8	383/285	260	0,6	72	1-8	Двухслойная	3	52	2	4	13	1,45	25,0	0,0935	84
AOK2-82-8	22	725	92/53		260						42	3	2	7	1,62	25,2	0,108	84
AO2-82-8-T	22	735	74,5/43		260						32	2	2	8	1,62	21,6	0,187	82
AO2-82-8-X	22	735	74,5/43		260						32	2	2	8	1,62	21,6	0,187	82
AO2-82-8-60	30		_		260						48	4	2	6	1,5	24,4	0,0816	82
A2-81-10-60	17		_	393/285	140	0,5	60	1-6	Двухслойная	2	66	3	2	11	1,35	16,1	0,145	74
AO2-81-10	17	580	65/38		190						66	3		11	1,35	17,6	0,160	74
AOΠ2-81-10	17	585	70,5/40,7		190						60	3		10	1,45	18,5	0,125	46
AOC2-81-10	19,8	550	89,3/51,8		190						54	3		9	1,56	19,0	0,0975	74
AOK2-81-10	13	570	54,5/31,4		190						48	2		12	1,62	18,3	0,180	75
AO2-81-10-T	13	585	52/30		190						48	2		12	1,4	17,0	0,256	74
AO2-81-10-X	13	585	52/30		190						48	2		12	1,4	17,0	0,256	74
AO2-81-10-60	17	-			190						54	3		9	1,5	18,8	0,112	74
A2-82-10-60	22	_	_	393/285	190	0,5	60	1-6	Двухслойная	2	51	3	2	8 и 9	1,56	19,1	0,0972	74
AO2-82-10	22		_		245						92	2	5	23	1,16	21,0	0,125	74
АОП2-82-10	22	585	92,4/53,4		245						64	4	2	8	1,4	21,4	0,0815	46
AOC2-82-10	24,5	550	102/59		245						56	4	2	7	1,5	21,3	0,071	74
AOK2-82-10	17	570	69,7/40,1		245						60	3	2	10	1,45	21,3	0,145	75
AO2-82-10-T	17	585	68/39		245						40	2	2	10	1,62	21,4	0,174	74
AO2-82-10-X	17	585	68/39		245	į					40	2	2	10	1,62	21,4	0,174	74
AO2-82-10-60	22		_		245						70	2	5	17 и 18	1,35	22,6	0,074	74

Таблица 8.10. Обмоточные данные электродвигателей единой серии A2 и AO2 и их модификаций 9-го габарита на напряжение 220/380 В

-		_								C	татор							Ротор
Тип электро- двигателя	P, KBt	п, мин ⁻¹	lı, A	Dc/dc,	L,	δ, мм	Zı	У1	Тип обмотки	Net	Пэt	m ₁	aı	Wki	Диа метр провода	G1	r1	z2
A2-91-2	100	2920	311/180	458/247	170	1,2	48	1-16	Двухслойная	8	81	9	2	4 и 5	1,62	43,0	0,0209	40
A2-91-2-60	100		-		170						80	4		10	1,62	42,5	0,0167	
AO2-91-2	75	2940	220/127		215						80	5		8	1,62	45,7	0,0282	
AO2-91-2-T	55	2955	172/95,5		215						60	5		6	1,62	37,5	0,054	
AO2-91-2-X	55	2955	172/95,5		215						60	5		6	1,62	37,5	0,05	
AO2-91-2-60	75	_	_		215			_			80	4		10	1,62	45,7	0,018	
A2-92-2	125	2920	387/224	458/247	215	1,2	48	1-16	Двухслойная	8	77	11	2	3 n 4	1,62	44,0	0,0144	40
A2-92-2-60	125	_	_		215						78	3		13	1,62	44,7	0,0104	
AO2-92-2	100	2940	312/108		270						80	4		10	1,62	49,5	0,0195	
AO2-92-2-T	75	2955	232/134		270						63	7		4 u 5	1,56	39,5	0,034	
AO2-92-2-X	75	2955	_		250						63	7_		4 u 5	1,56	39,5	0,034	
AO2-92-2-60	100	_	_		270			_			78	3		13	1,62	48,4	0,0113	
A2-91-4	75	1470	237/137	458/290	170	1,0	60	1-13	Двухслойная	5	80	4	4	10	1,5	38,5	0,032	70
A2-91-4-60	75	-	_		170						72	_4		9	1,56	37,9	0,0272	70
AO2-91-4	75	1470	232/134		240						72	4		9	1,62	45,7	0,0282	70
АОП2-91-4	75	1480	246,5/142,5		240						80	. 5		8	1,5	44,2	0,0234	50
AOC2-91-4	58	1400	182,5/105,6		240						72	4		9	1,62	48,2	0,0283	70
AOT2-91-4	75	1450	256/148		170						80	4		10	1,5	39,0	0,0326	72
AOK2-91-4	55	1455	193/118		240						72	4		9	1,62	47,2	0,0281	72

_										C	татор							Ротор
Тип электро- двигателя	Р, к Вт	п, мин ^{- і}	I _I ,	Dc/dc,	L,	δ, мм	21	y 1	Тип обмотки	n _{k1}	n ₉₁	m ₁	aı	W _K 1	Диаметр провода	G1	r1	z2
AO2-91-4-T	55	1475	169/97,5	458/290	240	1,0	60	1-13	Двухслойная	5	66	3	4	11	1,45	37,8	0,0581	70
A02-91-4-X	55	_	_		240						66	3		11	1,45	37,8	0,0581	70
AO2-91-4-60	75	_			240						80	5		8	1,5	44,2	0,0236	70
A2-92-4	100	1470	313/181	458/290	2 15	1,0	60	1-13	Двухслойная	5	80	5	4	8	1,56	44,6	0,0209	70
A2-9 2-4-60	100	_			2 15						70	5		7	1,62	43,0	0,017	70
AO2-92-4	100	1470	306/177		330						70	5		7	1,62	51,4	0,0203	70
АОП2-92-4	100	1480	329/190		330						72	6		6	1,62	53,6	0,0142	50
AOC2-92-4	76,8	1400	242/198		330						70	5		7	1,62	53,4	0,0204	70
AOT2-92-4	100	1450	342/198		215						80	5		8	1,56	46,3	0,021	72
A OK2-92-4	75	1455	252/149		330						70	5		7	1,62	57,6	0,0204	72
AO2-92-4-T	75	1475	228/132		330						64	4		8	1,5	45,0	0,0341	70
AO2-92-4-X	75		_		330						64	4		8	1,5	45,0	0,0341	70
AO2-92-4-60	100	_	· –		330_						72	6		6	1,62	53,5	0,0146	70
A2-91-6	55	980	176/102	458/334	170	0,7	72	1-11	Двухслойная	4	68	2	6	17	1,4	31,5	0,0618	86
A2-91-6-60	55	_			170						60	2	6	15	1,5	30,0	0,0446	86
AO2-91-6	55	985	169/98		240						56	4	3	7	1,5	34,3	0,0508	8 6
АОП2-91-6	55	980	183/105,8		240						56	4	3	7	1,5	33,2	0,049	5 8
AOC2-91-6	49,5	930	161/93,3		240						56	4	3	7	1,5	34,5	0,0482	86
AOT2-91-6	55	960	189/109		170						68	2	6	17	1,4	31,1	0,059	81
AOK2-91-6	40	965	138,5/80		240						56	4	3	7	1,5	38,2	0,051	81
A02-91-6-T	40	980	123/71,5		240						54	3	3	9	1,35	28,3	0,102	8 6

T	_	_	,							C	татор							Ротор
Тип электро- двигателя	P, ĸBτ	п, мин ⁻¹	1 ₁ ,	Dc/dc,	L, mm	δ, мм	z ₁	y ı	Тип обмотки	n _{K1}	Пэ1	m ₁	a ₁	W _K 1	Диаметр провода	G1	r1	z2
AO2-91-6-X	40	980	123/71,5	458/334	240	0,7	72	1-11	Двухслойная	4	54	3	3	9	1,35	29,3	0,102	86
AO2-91-6-60	55	_	-		240						48	4	3	6	1,62	32,2	0,0352	86
A2-92-6	75	980	238/138	458/334	240	0,7	72	1-11	Двухслойная	4	60	5	3	6	1,5	36,7	0,0348	86
A2-92-6-60	75	_	-		240						50	5	3	5	1,62	33,7	0,0234	86
A02-92-6	75	985	230/133		330						63	3	6	11 и 10	1,5	44,8	0,0296	86
АОП2-92-6	75	980	248/143,2		330						60	6	3	5	1,45	38,7	0,0294	58
AOC2-92-6	67,7	930	219/127		330						60	6	3	5	1,45	39,6	0,029	86
AOT2-92-6	75	960	253/146		240						60	5	3	6	1,5	37,0	0,035	81
AOK2-92-6	55	965	190,6/110		330						63	3	6	11 и 10	1,5	45,5	0,0298	81
AO2-92-6-T	5 5	980	169/98		330						42	3	3	7	1,56	33,8	0,070	86
AO2-92-6-X	55	980	169/98		330						42	3	3	7	1,56	33.8	0,070	86
AO2-92-6-60	75	-			330						54	3	6	9	1,56	39,7	0,0244	86
A2-91-8	40	730	137/79,3	458/334	170	0,7	72	1-8	Двухслойная	3	56	2	4	14	1,56	25,9	0,074	86
A2-91-8-60	40				170						48	2		12	1,62	23,9	0,059	86
AO2-91-8	40	740	130/75		240						48	2		12	1,62	28,4	0,0698	86
АОП2-91-8	40	740	141/81,5		240						66	3		11	1,40	29,9	0,057	58
AOC2-91-8	42	700	147,5/85,3	,	240						66	3		11	1,40	30,5	0,0565	86
AOT2-91-8	40	720	148/85,7		170						60	2		15	1,50	26,5	0,086	84
AOK2-91-8	30	725	121/70		240						48	2		12	1,62	29,5	0,070	84
AO2-91-8-T	30	735	100/58		240						56	2		14	1,30	26,2	0,126	86

										C	Статор					· · · · · · · · · · · · · · · · · · ·		Ротор
Тип электро- двигателя	Р, кВт	п, мин ⁻¹	l ₁ ,	Dc/dc,	L,	δ, мм	Zi	y ₁	Тип обмотки	n _{K1}	Nat	m ₁	aı	W _K 1	Диаметр провода	G1	£1	z2
AO2-91-8-X	30	735	100/58	458/334	240	0,7	72	1-8	Двухслойная	3	56	2	4	14	1,30	26,2	0,126	86
AO2-91-8-60	40	-	_		240						60	3		10	1,45	28,4	0,0485	86
A2-92-8	55	730	180/104	458/334	240	0,7	72	1-8	Двухслойная	3	66	3	4	11	1,4	29,2	0,057	86
A2-92-8-60	55	-	-		240						54	3		9	1,56	29,5	0,0378	86
AO2-92-8	55	740	173/100		330						54	3		9	1,56	35,6	0,0453	86
АОП2-92-8	55	740	194/112		330						64	4		8	1,45	37,2	0,035	58
AOC2-92-8	57,8	700	201/116,5		330						64	4		8	1,45	37,9	0,0348	86
AOT2-92-8	55	725	198,8/114,8		265						60	3		10	1,45	31,4	0,051	84
AOK2-92-8	40	730	161/92,5		330						54	3		9	1,56	36,4	0,0454	84
AO2-92-8-T	40	735	100/58		330						44	2		11	1,5	35,3	0,090	86
AO2-92-8-X	40	735	129/75		330						44	2		11	1,5	35,3	0,090	86
AO2-92-8-60	55	١	_		330						64	4	_	8	1,5	39,0	0,0326	86
A2-91-10-60	30		-	458/334	170	0,6	60	1-6	Двухслойная	2	60	4	2	7и8	1,5	20,6	0,0693	74
AO2-91-10	30	585	100/61		270						64	4		8	1,45	25,9	0,099	74
АОП2-91-10	30	590	123/70,7	,	215						56	4		7	1,56	23,7	0,0657	46
AOC2-91-10	31,6	555	130/75,5		215						56	4		7	1,56	25,8	0,065	74
AOK2-91-10	22	570	90/52		215						54	3		9	1,56	22,0	0,113	75
AO2-91-10-T	22	590	79/48		215						54	3		9	1,4	21,4	0,143	74
A02-91-10-X	22	590	83/48		215						54	3		9	1,4	21,4	0,143	74
AO2-91-10-60	30	-	_		215						60	4		7и8	1,5	20,0	0,067	74

Тип электро-	Ь		l.		_						татор	·	· · · _ ·-				T	Ротор
двигателя	P, kBt	п, мин ⁻¹	l ₁ , A	Dc/dc,	L,	δ, мм	Zį	Уi	Тип обмотки	n _{k1}	Пэ1	m ₁	a ₁	W _K 1	Диаметр провода	G1	rit	z2
A2-92-10-60	40	-	-	458/334	215	0,6	60	1-6	Двухслойная	2	60	5	2	6	1,5	23,2	0,0497	74
AO2-92-10	40	585	140/85		330						60	5	2	6	1,5	29,4	0,0626	74
АОП2-92-10	40	590	162/93,6		270						70	2	5	14	1,56	26,7	0,0472	46
AOC2-92-10	37,9	555	150/86,5		270						56	2	5	14	1,56	27,9	0,0466	74
AOK2-92-10	30	570	121,7/70,4		270						56	4	2	7	1,56	25,9	0,074	75
AO2-92-10-T	30	590	113/65,5		270						42	3	2	7	1,62	25,1	0,0936	74
AO2-92-10-X	30	590	89,5/45,5		270						42	3	2	7	1,62	25,1	0,0936	74
AO2-92-10-60	40	_	_		270						50	5	2	5	1,62	25,4	0,04	74

Примечания

- 1. В таблицу включены электродвигатели основного исполнения и его модификации: АОП2 с повышенным пусковым моментом, АОТ2 с повышенными энергетическими показателями для текстильной промышленности, АОС2 с повышенным скольжением, АОК2 с фазным ротором; а также специальных исполнений: тропического АО2-72-4Т, химостойкого АО2-81-8-Х, малошумного АО2-22-4-Ш и для частоты 60 Гц А2-82-8-60.
- 2. Обмоточные данные электродвигателей влагоморозостойкого исполнения 1—5-го и 8, 9-го габаритов, а также тропического исполнения 1—5-го габаритов, которые в таблице не приведены, такие же, как и у соответствующих им электродвигателей основного исполнения AO2. Обмоточные данные электродвигателей 6-го и 7-го габаритов влагоморозостойкого исполнения такие же, как и у соответствующих им электродвигателей 6-го и 7-го габаритов в тропическом исполнении.
- 3. Обмоточные данные электродвигателей приведены для номинальных напряжений 220/380 В, а для тропического исполнения 230/400 В при соединении фаз обмотки статора Δ/Y . Для других номинальных напряжений число эффективных проводников в пазу следует при необходимости пересчитать прямо пропорционально напряжению, а поперечное сечение проводника обратно пропорционально напряжению. Схема соединения обмотки при этом не изменяется.
- 4. Обмотки статоров электродвигателей влагоморозостойкого и тропического исполнений 6—9-го габаритов выполняют проводом марки ІІСД, обмотки статоров электродвигателей химостойкого исполнения 1—9-го габаритов проводом марки ПСДТ, обмотки статоров электродвигателей всех остальных габаритов и исполнений проводом марки ПЭТВ.
- 5. Пазовая изоляция обмоток электродвигателей АОЛ2 1—3-го габаритов, АО2 1—5-го габаритов и А2 6—9-го габаритов имеет класс E, а электродвигателей АО2 6—9-го габаритов изоляция повышенной нагревостойкости.

8.2. Обмоточные данные фазных роторов электродвигателей серий AOK2 и AK2 4—9-го габаритов

-							Рот	ор фазный					
Тип электро- двигателя	P, ĸBτ	Z ₂	Y ₂	Тип обмотки	n _{k2}	П _{Э2}	m ₂	a ₂	Wk2	Средняя длина витка, мм	Размер прово- да, мм	G ₂ ,	r ₂
AOK2-41-4	3	24	1–7	Двухслойная	2	52	2	_	13	500	Ø 1,3	3,9	0,343
AOK2-42-4	4									580		4,45	
AOK2-41-6	2,2	27	1-5		1; 2;	44	2	_	11	436	Ø 1,3	3,15	0,298
AOK2-42-6	. 3									516		3,85	0,387
AOK2-51-4	5,5	48	1-11		4	12	2	-	3	610	1,35 ×3,05	6,45	0,0655
AOK2-52-4	7,5									680		7,2	0,0732
AOK2-51-6	4	45	1-7		2; 3;	10	1	_	5	560	1,68×4,4	8,35	0,103
AOK2-52-6	5,5									670		10	0,123
AOK2-51-8	3	48	1-6		2	12	2	_	3	510	1,35×3,8	6,75	0,0476
AOK2-52-8	4									620		8,25	0,053
AOK2-61-4	10	48	1-11		4	6	1	-	3	682	2,1×3,8	7,3	0,078
AOK2-62-4	13									742		7,9	0,085
AOK2-61-6	7,5	36	1-6		2	10	1		5	676	2,1×4,7	12,2	0,076
AOK2-62-6	10									756		13,5	0,085
AOK2-61-8	5,5	36	1-5		1; 2;	10	1		5	622	2,1×4,7	11,3	0,071
AOK2-62-8	7,5					-				702		12,6	0,080

T							Рот	ор фазный					
Тип электро- двигателя	Р, кВт	Z 2	Y ₂	Тип обмотки	n _K 2	N ₃ 2	m ₂	a ₂	W _K 2	Средняя длина витка, мм	Размер прово- да, мм	G ₂ ,	r ₂
AOK2-71-4	17	24	1-6	Двухслойная	2	24	2	_	6	810	1,81×3,28	11,9	0,0607
AOK2-72-4	22									890		13,1	0,066
AOK2-71-6	13	36	1-6		2	10	1	_	5	765	2,44×6,4	18,5	0,0543
AOK2-72-6	17									845		20,4	0,060
AOK2-71-8	10	36	1 –5		1; 2;	10	1	_	5	727	2,44×6,4	17,6	0,0517
AOK2-72-8	13									807		19,5	0,0572
AOK2-81-4	30	60	1–16		5	2	1	_	2	976	2,63×15,6	21,1	0,00865
AOK2-82-4	40									1016		24,1	0,00895
AOK2-81-6	22	81	1—15 и 1—14		3; 4;	2	1	_	2	918	2,63×15,6	26,8	0,011
AOK2-82-6	30							_		1 058		30,9	0,0125
AOK2-81-8	17	84	1-12 и 1-11		3; 4;	2	1	_	2	882	2,63×15,6	26,7	0,0109
AOK2-82-8	22									1022		30,9	0,0126
AOK2-81-10	13	75	1-7		2; 3;	24	4	_	3	780	2,63×1,16	17,9	0,091
AOK2-82-10	17									890		19,7	0,104
AOK2-91-4	55	72	1–19	Однослойная	6	2	1	-	2	1230	2,63×15,6	31,8	0,0129
AOK2-92-4	75			Однослойная						1410		36,4	0,0148
AOK2-91-6	40	81	1-15 и 1-14		4; 5;	2	1		2	1140	2,63x15,6	33,3	0,0135
AOK2-92-6	55									1 366		39,8	0,0162
AOK2 91-8	30	84	1-12 и 1-11		3; 4;	2	1	_	2	1055	2,63×15,6	32,0	0,0130

G₂,

KΓ 37,3 12

0,0153

Размер прово-

да, мм

2,63×15,6

AOK2-91-10	22	75	1-7	Двухслойная	2; 3;	24	6	_	2	876	2,83×1,25	22,4	0,0407
AOK2-92-10	30									985		25,3	0,0448
AK2-81-4	40	60	1–16		5	2	1	-	2	976	2,63×15,6	21,1	0,00865
AK2-82-4	55									1016		24,1	0,00895
AK2-81-6	30	81	1-15 и 1-14		4; 5;	2	1	_	2	918	2,63×15,6	26,8	0,0109
AK2-82-6	40									1058		30,9	0,0126
AK2-81-8	22	84	112 n 111		3; 4;	2	1	_	2	882	2,60x15,6	26,7	0,0109
AK2-82-8	30									1 022		30,9	0,0126
AK2-91-4	75	72	1-19		6	2	1	_	2	1090	2,63×15,6	28,2	0,0115
AK2-92-4	100									1180		30,5	0,0124
AK2-91-6	55	81	115 и 1—14		4; 5;	2	1	-	2	1000	2,63×15,6	29,2	0,0119
AK2-92-6	75									1140		33,2	0,0135
AK2-91-8	40	84	1—12 и 1—11		3; 4;	2	1	_	2	915	2,63×15,6	27,7	0,0113
AK2-92-8	55									1105	-	33,4	0,0136

Ротор фазный

 a_2

 m_2

W_K2

2

Средняя длина

витка, мм

1235

AK

Тип электро-

двигателя

AOK2-92-8

P,

кВт

40

 Z_2

84

Y₂

1-12 и 1-11

Тип обмотки

Однослойная

 Π_{K2}

3; 4; ...

N₃2

2

2. Обмотки фазного ротора электродвигателей соединяют Ү.

Обмоточные данные электрических машин

8.3. Обмоточные данные электродвигателей серии 4А

Таблица 8.11. Обмоточные данные электродвигателей серий 4А50, 4А56 и 4А63

T 0.000	<u>_</u>									Статор							Рото
Тип элекгро- двигателя	Р, Вт	п, мин ⁻¹	U ₁	I ₁ ,	D _c /d _c ,	L, MM	δ, мм	Z 1	Тип обмотки	Диаметр про- вода, мм	Sn	y 1	aı	wφ	r ₁ , Om	G ₁ , KΓ	Z 2
4AA50A2	90	2720	127/220	0,94/0,54	81/41	42	0,25	12	Однослойная	0,35	260	6	1	520	28,2	0,426	9
		İ	220/380	0,54/0,31						0,27	450			900	92,3	0,440	
4AA50B2	120		127/220	1,09/0,63						0,41	228			456	19,1	0,542	
			220/380	0,63/0,46		,				0,31	394			788	57,8	0,534	
4AA50A4	60	1330	127/220	0,32/0,53	81/46	42	0,25	24		0,33	367	3	1	734	35,2	0,542	15
			220/380	0,53/0,31					·	0,27	635			1270	91,0	0,534	Ì
4AA50B4	90	1320	127/220	1,38/0,80						0,38	289			578	22,7	0,419	
			220/380	0,8/0,46						0,31	500			1000	59,1	0,485	
4AA56A2Y3	180	2760	127/220	1,63/0,95	89/48	47	0,25	24	Однослойная кату-	0,41	93	10	1	372	14,7	0,42	18
4аав56а2у3 4аа56а2пуз			220/380	0,95/0,55					шечная (вразвалку)	0,29	166			664	52,4	0,38	
4AA56A2Y3	250		127/220	2,18/1,26		56				0,44	82			328	12,0	0,45	
4AAB56A2У3 4AA56A2ПУЗ			220/380	1,26/0,73						0,33	143			572	37,0	0,44	
4AA56A4Y3	120	1380	127/220	1,31/0,76	89/55	47	0,25	24	Однослойная кату-	0,41	133	6	1	532	17,6	0,50	18
4аав56а4у3 4аа56а4пуз			220/380	0,76/0,44	•				шечная (концентри- ческая)	0,29	254			1016	67,2	0,48	
4AA56A4Y3	180	1370	127/220	2,0/1,16		56				0,44	117			468	14,4	0,55	
4 АА В56А4УЗ 4 АА 56А4ПУЗ			220/380	1,16/0,67						0,33	203			812	44,6	0,63	
4 AA 63A2Y3	370	2740	127/220	2,8/1,62	100/54	56	0,3	24	Однослойная кату-	0,51	73	10	1	292	8,41	0,58	18
4 АА В6ЗА2УЗ 4АА6ЗА2ПУЗ			220/380	1,62/0,937					шечная (вразвалку)	0,38	126			504	26,20	0,55	

Z2

18

г1, Ом | G1, кг

0,60

0,62

5,62

16,70

4AA63A2ПУ3		,	220/380	2,3/1,33	3				шетная (вразвалку)	0,44	101		4	04 16,	70 0	,62	
4АА63А4У3	250	1370	1 27/220	2,57/1,4	9 100/61	56	0,25	24	Однослойная кату-	0,49	98	6	1 3	92 10	1 (,59	18
4AAB63A4У3 4AA63A4ПУ3			220/380	1,49/0,8	6				шечная (концентри-	0,38	169		6	76 2	0	,61	
4AA63A4Y3	370	1360	127/220	3,6/2,08	;	65				0,53	79		3	16 7,	1 (,59	
4AAB63A4У3 4AA63A4ПУ3			220/380	2,08/1,2	?					0,41	137		5	48 21	4 (),61	
4AA63A6Y3	180	900	127/220	3,12/1,3	7 100/65	56	0,25	36] .	0,44	98	6	1 5	88 16	8 (,64	28
4ААВ6ЗА6УЗ 4АА6ЗА6ПУЗ			220/380	1,37/0,7	9					0,33	170		10)20 51	9 (,62	
4AA63A6Y3	250		127/220	3,12/1,8	3	75				0,53	76		4	56 10	5 (3,83	
4AAB63A6У3 4AA63A6ПУ3			220/380	1,8/1,04	1					0,41	131		.7	86 30	(),85	
2. Соед 3. Мар	цинен ка пр	ие фаз овода	обмотки обмотки	ведены дл статора д статора П тельный.	3 /Ү. ЭТВ.			е данн	ьые электродеигаг	пелей сер	ouu 4A71						
T				1 4					Ста	тор						ı	Ротор
Тип электро- двигателя	P, Br	п, мин ⁻¹	U ₁	I ₁ , A, при U = 380 B	D _c /d _c ,	L, MM	δ, мм	Z ₁	S _n y ₁	a ₁	Диаметр да,		G		г ₁ , Ом		Z2
4A71A2	0,75	2840	220/380	1,7	116/65	65	0,35	24	89 1-12; 2-11	1	0,5	53	0,9	91	12		20
			380/660						154	1	0,4	1	0,9	93	35		
		ľ	500					1 .	117		0.4		1	i		- 1	

Тип электро-

двигателя

4AA63A2Y3

4AAB63A2Y3

Ρ,

Вт

550

n,

мин-1

2730

Uı

127/220

220/380

I₁,

Α

3,98/2,3

2,3/1,33

D_c/d_c,

мм

100/54

δ,

мм

0,3

мм

65

Ζį

24

Статор

Тип обмотки

Однослойная кату-

шечная (вразвалку)

Диаметр про-

вода, мм

0,57

0,44

 S_n

58

101

У1

10

a₁

1

232

404

Ротор

Turn annurna	n	_		1. A sou						Статор		···			Ротор
Тип электро- двигателя	Р, Вт	мин ⁻¹	U ₁	I ₁ , A, при U = 380 B	Dc/dc, MM	L,	δ, мм	Z ₁	Sn	y 1	aį	Диаметр прово- да, мм	G ₁ , Kr	Г ₁ , Ом	Z 2
4A71B2	1,1	2810	220/380	2,5	116/65	74	0,35	24	73	1-12; 2-11	1	0,59	0,96	8,35	20
			380/660						126		1	0,44	0,92	25,9	
			500						96		1	0,51	_	-	
4A71A4	0,55	1390	220/380	1,7	116/65	65	0,25	24	113	1-8; 2-7	1	0,53	0,92	12,2	18
			380/660						192		1	0,41	0,93	35,0	
			500						149		1	0,47	_	_	7
4A71B4	0,75	1390	220/380	2,17	116/65	74	0,25	24	95	1-8; 2-7	1	0,57	0,94	9,45	18
			380/660						164		1	0,44	0,97	27,3	
			500						125		1	0,49	_	_	
4A71A6	0,37	910	220/380	2,17	116/76	65	0,25	36	114	1-8; 2-7	1	0,47	0,97	21,2	18
			380/660						-		_			_	
			500						150		1	0,38	_	_	
4A71B6	0,55	900	220/380	1,26	116/76	90	0,25	36	85	1-8; 2-7	1	0,53	1,08	14,45	28
			380/660						147		1	0,41	1,11	41,8	
			500						112		1	0,47			
4A71B6	0,25	680	220/380	1,05	116/76	74	0,25	36	148	1-6; 2-4* и 1-6**	1	0,41	0,95	35,6	28
			380/660]							_			_	
						l			195		1	0,35	_	_	1

Статор

Таблица 8.13. Обмоточные данные электродеигателей серии 4А80

Ζı

36

36

36

36

δ.

мм

0.35 24

мм

78 0.35 24

98

78

98

78

78 0,25 36 Тип об-

мотки

Одно-

слойная

Одно-

слойная

Одно-

слойная

Одно-

слойная

Одно-

слойная

Одно-

слойная

Одно-

слойная

Одно-

слойная

Статор

y1

1-12: 2-11

1-12: 2-11

1-12:

2-11; 3-10

1-12:

2-11: 3-10

1-8: 2-7

1-8; 2-7

1-6; 2-5

1-6: 2-5

Диаметр

провода, мм

8.0

0.59

0.93

0.64

0.67

0.51

0.74

0.55

0.59

0.44

0.72

0,53

0.49

0.38

0.57

0.44

Sn M₁ aı

61

106

48

83

60

102

49

85

82

142

58

101

121

200

91

153

				-		
4AX80B6 4AA80B6				380/660	3/1,75	
4 A 80 A 8	0,37	675	Δ/Υ	220/380	2,5/1,45	131/88
4AX80A8 4AA80A8				380/660	1,45/0,85	
4A80B8	0,55	675	Δ/Υ	220/380	3,5/2	131/88
4AX80B8 4AA80B8				380/660	2/1,15	
Приме	чания				-	

l₁,

A

5.7/3.3

3,3/1,4

_

_

4.9/2.8

2,8/1,6

6,2/3,6

3,6/2,1

4/2,3

2,3/1,35

5,3/3

D_c/d_c,

мм

131/74

131/74

131/84

131/84

131/88

131/88

/88 98 0,25

115 0,25

0,25 36

0	,	2	5	
0	,	2	5	

1,51	
1,82	20
1,74	
1,36	28
1,35	
1,49	28
1,44	
1,24	28
1,19	
1,58	28
1,51	
1,16	28
1,16	
1,33	28
1,34	

Ротор

Z2

20

Gı.

KΓ

1.59

rı,

Ом

4.1

13.1

2.6

8,14

1,15

2,1

5,3

16.5

10.8

33.6

6.25

20

21.4

48,8

13.7

37,7

W_K1

424

192

332

360

612

294

510

492

852

348

606

1200

545

818

1 244

1

1

1

1 726

1

1

1

1 1

1 1

1

Тип электро-

двигателя

4A80A2

4AX80A2

4AA80A2

4A80B2

4AX80B2

4AA80B2

4A80A4

4AX80A4

4AA80A4

4A80B4

4AX80B4

4AA80B4

4A80A6

4AX80A6

4AA80A6

4A80B6

Ρ,

Вт

1,5

2.2

1.1

1.5

0.75

1,1

n.

мин-1

2850

2850

1400

1400

920

920

Соедине-

ние фаз

Δ/Υ

 Δ/Υ

 Δ/Υ

Δ/Υ

 Δ/Υ

Δ/Υ

Uı

220/380

380/660

220/380

380/660

220/380

380/660

220/380

380/660

220/380

380/660

220/380

- 1. Обмоточные данные приведены для частоты 50 Гц.
- 2. Марка провода обмотки статора ПЭВТВ. 3. Односторонняя толщина пазовой изоляции 0,2 мм.

Таблица 8.14. Обмоточные данные электродеигателей серии 4А90

Тип электродвигателя Вт мин-1 U1 Соедине- I1, ние фаз А Тип объести и				,		Статор	r		·—-	,	,			
Тип электродвигателя		миН ^{. †}	U ₁	ние фаз		Тип обмотки	y 1	Sn	Диаметр про- вода, мм	m ₁	W _K 1	г ₁ , Ом	G₁, ĸr	δ, мм
4A90L2, Р3, АВ, Б, УІІ	3	2840	220/380	Δ/Υ	10,53/6,1	Однослойная	1-12; 2-11	44	1,08	1	176	1,96	2,51	0,4
			380/660		6,1/3,51			76	0,8		304	6,2	2,39	
			220	Y	10,53			2 6	1,0	2	104	0,68	2,54	
			400		5,79			46	1,04	1	184	2,21	2,44	
			500		4,63			58	0,96		232	3,27	2,6	
4A90L4, Р3, Н, Б, У II	2,2	1425	220/380	Δ/Υ	8,67/5,02	Однослойная	1-12;	40	0,9	1	240	3,1	1,92	0,4
			380/660		5,02/2,89		2-11; 3-10	69	0,67		414	9,7	1,84	
			220	Y	8,67			23	1,16		138	1,07	1,87	
			400		4,77			42	0,86		252	3,58	1,84	
			500		3,82			53	0,77		318	5,62	1,87	
4A90L6, Р3, Н, Б, УП	1,5	935	220/380	Δ/Υ	7,08/4,1	Однослойная	1-8; 2-7	51	0,83	1	306	4,37	1,95	0,25
,			380/660		4,1/2,36			88	0,62		528	13,5	1,89	
			220	Y	7,08			30	1,08		180	1,51	1,94	
			400		3,89			54	0,8		324	4,97	1,93	
		- 	500		3,11			67	0,72		402	7,6	1,92	
4A90LA8, РЗ, АВ, Н, Б, У П	0,75	700	220/380	Δ/Υ	4,66/2,7	Однослойная	1-6; 2-5	74	0,67	1	444	8,3	1,58	0,25
			380/660	<u></u>	2,7/1,55			128	0,51		768	24,9	1,6	
			220	Y	4,66			43	0,9		258	2,68	1,66	
			400		2,56			78	0,64		468	9,6	1,53	
			500		2,05			97	0,59		582	14,1	1,62	

									Статор					
Тип электродвигателя	P, Bt	п, мин ⁻¹	U ₁	Соедине- ние фаз	1 ₁ ,	Тип обмотки	y 1	Sn	Диаметр про- вода, мм	m ₁	w _{k1}	г ₁ , Ом	G ₁ ,	δ, мм
4A90LB8, AB, H, Б, УП, РЗ	1,1	700	220/380	Δ/Υ	6,04/3,5	Однослойная	1-6; 2-5	58	0,77	1	348	5,75	1,91	0,25
			380/660		3,5/2,01			101	0,57		606	18,1	1,83	
	~		220	Y	6,04			34	1,0		204	2,0	1,87	
			400		3,32			61	0,74		366	6,53	1 ,85	
			500		2,66			76	0,67		456	10,0	1,9	
4AC90L2, Б, ABC	3,5	2,775	220/380	Δ/Υ	13,3/7,7	Однослойная	1-12; 2-11	41	1,12	1	164	1,7	2,5	0,4
			380/660		7,7/4,43			71	0,83		284	5,25	2,4	
			220	Y	13,3			24	1,04	2	96	0,58	2,55	
			400		7,31			43	1,08	1	172	1,9	2,45	
			500		5,85	,		54	0,96		216	3,05	2,42	
4AC90L4, Б, ABC	2,4	1360	220/380	ΔΛ	10,2/5,9	Однослойная	1-12;	40	0,9	1	240	3,1	1,92	0,4
			380/660		5,9/3,4		2-11; 3-10	69	0,67		414	9,7	1,84	
			220	Y	10,2			23	1.16		138	1,07	1,87	
-			400		5,6			42	0,86		252	3,58	1,87	
			500		4,5			53	0,77		318	5,62	1,93	
4AC90L6, Б, А ВС	1,7	900	220/380	Δ/Υ	8,6/5	Однослойная	1-8; 2-7	47	0,86	1	282	3,74	1,88	0,4
			380/660		5,0/2,8			82	0,64		492	11,8	1,88	
			220	Y	8,6			27	1,12		162	1,25	1,92	
			400		4,7			50	0,83		300	4, 2 7	1,9	
			500		3,8			62	0,74		372	6,68		

Тип электродвигателя	Вт	мин ⁻¹	U ₁	ние фаз	А Тип о	бмотки	y 1	Sn	Диаметр про- вода, мм	m ₁	W _K 1	г ₁ ,	Gı,	δ, мм
4AC90LA8, Б, ABC	0,9	660	220/380	Δ/Υ	5,87/3,4 Однос	лойная	1-6; 2-5	70	0,69	1	420	7,42	1,59	0,25
		Ī	380/660		3,4/1,95			122	0,51		732	23,7	1,53	
			220	Y	7,6	•		40	0,93		240	2,34	1,64	
		Ī	400		4,18			74	0,67		444	8,3	1,58	
		Ī	500		3,34			92	0,59	1	552	13,4	1,53	
4AC90LB8, Б, ABC	1,2	660	220/380	Δ/Υ	7,6/4,4 Однос	лойная	1-6; 2-5	54	0,8	1	324	4,95	1,91	0,25
		Ī	380/660	·	4,4/2,53			94	0,59		564	15,9	1,82	
			220	Y	7,6			31	1,04		186	1,68	1,85	ı
			400		4,18			57	0,77		342	5,63	1,87	
	-		500		3,34			71	0,69		426	8,16	1,87	
Примечание. Мар	P,		аблица 8.		очные данные		одвигате		рии 4A100 Статор					
Тип электродвигателя	Вт	мин ⁻¹	U ₁	A A	y 1	. г	1э1 Диа			m ₁	W _{K1}	r ₁ , O _M	G ₁ , Kr	δ, мм
A100L2K	5,5	2880		18,36/10,5	1-12; 2-11		44		1,25		176	1,54	3,54 0,45	0,45
			380/660	10,5/6,05		-	76	0,9	96		304	4,53	3,62	
			500	7,98		!	58	1,0)8		232	2,72	3,5	
4A100LA4K	4	1430	220/380	14,85/8,6	1-12; 2-11; 3-1	10	35	1,1	12	1	210	1,9	2,81	0,3
			380/660	8,6/4,95			60	0,8	36		360	5,53	2,85	

46

1,0

276

3,14

2,95

Р, Вт

Тип электродвигателя

П,

U1

500

6,53

Соедине-

h,

Статор

-
သ
$\overline{}$
2 2 2 2
₹,
Ĉ
3
S
£
∻
ã
٦,
ŭ
Į
ၢ
Ď
Ġ.
\supseteq
Š
3
ŝ
Ξ
á
₹
\approx
×
2
ñ
Обмоточные данные эпектрических машин
Ē
_

T	п,	11.	l ₁ ,			Статор	_					
Тип электродвигателя	P, Bt	MNH-1	U ₁	A	y 1	Пэ1	Диаметр провода, мм	шı	W _K 1	г1, Ом	G ₁ , кг	δ, мм
4A100LB4K	4	1430	220/380	-	1-12; 2-11; 3-10	35	0,93	1	210	1,9	2,55	0,3
			380/660			60	0,69		360	5,53	2,44	
			500			46	0,8		276	3,14	2,5	
4A100L6K	2,2	950	220/380	9,75/5,65	1-8; 2-7	56	0,74	1	336	3,63	2,28	0,3
			380/660	5,65/3,25		97	0,55		582	11,4	2,2	
			500	4,29		74	0,64		444	6,45	2,25	
4A100LA8K	1,5	700	220/380	8,11/4,7	1-6; 2-5	86 -	0,74	1	516	8,06	2,28	0,3
			380/660	4,7/2,7		150	0,55		900	25,4	2,2	
			500	3,57		113	0,64		678	14,2	2,25	
4A100LB8K	1,7	700	220/380	_	1-6; 2-5	65	0,86	1	390	5,0	2,56	0,3
TA TOOLDON			380/660			113	0,64		678	15,6	2,49	
			500			85	0,74		510	8,8	2,49	
4A100L2, РЗ, АВ, 112K, Е, Б	4	2880	220/380	13,47/7,8	1-12; 2-11	38	0,96	2	152	1,19	3,76	0,45
			380/660	7,8/4,4] [66	1,0	1	264	3,81	3,58	
			500	5,92		50	1,16	1	200	2,14	3,64	
4A100L2, РЗ, АВ, Е, Б	5,5	2880	220/380	-	1–12; 2–11	30	1,08	2	120	0,81	4,12	0,45
			380/660			52	1,16	1	208	2,44	4,15	
			500			39	0,93	2	156	1,42	4,0	
4A100S4, РЗ, АВ, 4У З, Е, Б	3	1435	220/380	11,57/6,7	1-12; 2-11; 3-10	35	1,12	1	210	1,9	2,8	0,3
			380/660	6,7/4,27		60	0,86		360	5,53	2,85	
			500	5,09		46	1,0		276	3,14	2,95	
4A100L4, РЗ, АВ, 112К, Е, Б	4	1435	220/380	_	1-12; 2-11; 3-10	28	1,3	1	168	1,28	3,39	0,3
•			380/660			48	0,96		288	3,98	3,18	
			500			37	1,12		222	2,24	3,33	

T	P,	n,	Uı	11,			Статор					
Тип электродвигателя	Вт	мин-1	UI	Α	y 1	n _{a1}	Диаметр провода, мм	m ₁	W _K 1	r1, Ом	G ₁ , Kr	δ, мм
4A100L4, РЗ, АВ, 112К, Е, Б	2,2	950	220/380	-	1-8; 2-7	43	1,04	1	258	2,55	2,81	0,3
			380/660			74	0,8		444	7,4	2,87	
			500			57	0,9		342	4,52	2,78	
4A100L6, РЗ, АВ, 112K, Е, Б	1,5	700	220/380	_	1-6; 2-5	56	0,93	1	336	3,85	2,71	0,3
			380/660			97	0,69		582	12,1	2,6	
			500			74	0,8		444	6,87	2,66	
4A100L04	3	1435	220/380	_	1-8	33 ×2	8,0	1	396	5,25	2,04	0,4
			380/660			57× 2	0,59		684	16,8	1,92	
			500			43× 2	0,69		516	9,23	1,98	
4A100L4	4	1435	220/380	-	1-8	25× 2	0,93	1	300	3,36	2,35	0,4
			380/660			43× 2	0,69		516	10,45	2,24	
			500			33× 2	0,8		396	5,95	2,3	
4AC100S2, Б	4,8	2805	220/380	17,79/10,3	1-12; 2-11	36	0,96	2	144	1,13	3,58	0,45
			380/660	10,3/5,93		63	1,04	1	252	3,36	3,7	
			500	5,0		47	1,2	1	188	1,88	3,66	
4AC100L2, Б	6,3	2805	220/380	23,14/13,4	1-12; 2-11	27	1,12	2	108	0,676	4,02	0,45
			380/660	13,4/7,71		47	0,86		188	2,0	4,12	
			500	10,18		35	1,0		140	1,1	4,16	
4AC100S4, Б	3,2	1395	220/380	13,47/7,8	1-12; 2-11; 3-10	33	1,16	1	198	1,67	2,85	0,3
			380/660	7,8/4,4		57	0,9		342	4,8	2,97	
			500	10,16		43	1,0		258	2,94	2,76	
4AC100L4, Б	4,25	1395	220/380	17,44/10,1	1-12; 2-11; 3-10	26	0,93	2	156	1,15	3,23	0,3
			380/660	10,1/5,81		45	1,0	1	270	3,44	3,24	
			500	7,67		34	1,16	1	204	1,93	3,27	

Тип электродвигателя	B _T	и, мин ⁻¹	U ₁	'1' A			Guestana sacana ::::			r. 0	G. v.	δ, мм
		.——	. 		yı	Na1	Диаметр провода, мм	<u>m1</u>	W _K 1	г1, Ом	G ₁ , Kr	†·——
#AC100L6, Б	2,6	920	220/380	11,9/6,9	1-8; 2-7	40	1,08	1	240	2,2	2,8	0,3
			380/660	6,9/3,97		69	0,83		414	6,42	2,87	-
			500	5,24		53	0,96		318	3,69	2,93	ł
4AC1 00L8, Б	1,6	675	220/380	9,84/5,7	1-6;2-5	52	0,96	1	312	3,35	2,68	0,3
			380/660	5,7/3,28		90	0,72		540	10,3	2,6	
			500	4,33		68	0,83		408	5,88	2,62	
4A100S2Π2	4	2805	220/380	-	1-10	20×2	1,35	1	160	1,12	3,48_	0,45
			380/660			35×2	1,0		280	3,58	3,37	
			500			_26×2	1,16		208	1,97	3,36	
4A100L2Π2	5,5	2805	220/380	-	1-10	17×2	1,0	1	136	0,96	3,62	0,45
			380/660			30×2	1,08		240	2,9	3,73	
			500			23×2	1,25		184	1,66	3,82	
‡A100S4Π2	3	1400	220/380	_	1-8	19×2	1,12	1	228	1,79	2,64	0,3
			380/660			33×2	0,86		396	5,26	2,98	
			500			25×2	0,96		300	3,2	2,55	
IA1 00L4Π2	4	1400	220/380	-	1 –8	15×2	1,25	1	180	1,29	2,95	0,3
			380/660			26×2	0,96		312	3,78	3,02	
			500			20×2	1,08		240	2,29	2,94	
‡A1 00L6∏2	2,2	950	220/380		1-6	22×2	1,08	1	264	2,24	2,87	0,3
			380/660			38×2	0,8		456	7,05	2,72	
			500			29×2	0,93		348	3,99	2,8	1
‡A1 00L8Π2	1,5	700	220/380		1-5	29×2	0,93	1	348	3,8	2,66	0,3
			380/660			50×2	0,69		600	11,9	2,54	1
			500			38×2	0,8		456	6,7	2,59	1

4. Обмотка однослойная.

Статор

Таблица 8.16. Обмоточные данные электродвигателей серии 4А112

_											Статор							Ротор
Тип электродви- гателя	Р, кВт	п, мин ⁻¹	U ₁ B	I ₁ , A	Соедине- ние фаз	D _c /d _c ,	L, MM	δ, мм	Z ₁	Тип обмотки	Диаметр провода	Sn	a ₁	W _K 1	y 1	r ₁	G ₁	Z ₂
4A112M2Y3 4AB112A2Y3	7,5	2900	127/220	44/25	Δ/Υ	191/110	125	0,6	24	Однослой- ная	1,16	30*	2	60	1-12; 2-11	0,174	4,79	22
4A112M2T2 4A112M2Y2 4A112M2XY3			220/380	25/15							1,25	27*	1	104		0,521	4,81	
4A1 1 2M2CY1			380/660	15/8,5							1,35	44	1	180		1,55	4,85	
			500	11	Y						1,08	34*	1	136		0,912	4,71	
4A112M4Y3 4AB112A4Y3	5,5	1450	127/220	34,4/19,9	Δ/Υ	191/126	125	0,3	36	Однослой- ная	1,30	14*	1	84	1-12; 2-11;	0,323	3,49	34
4A112M4T2 4A112M4Y2 4A112M4XY3			220/380	19,9/11,5							1,40	25	1	150	3–10	0,99	3,61	
4A112M4CY1			380/660			-					1,04	43	1	258		3,1	3,44	
			500	8,74	Y				:		1,20	23	1	198		1,79	3,53	
4A112M6Y3 4AB112A6Y3	3	950	127/220	22,2/12,8	Δ / Υ	191/132	100	0,3	54	Однослой- ная	1,04	16*	1	144	1-12; 2-11;	0,687	3,05	51
4A112MA6T2 4A112MA6Y2 4A112MA6XY3		220/380 12,8/7,4						ная	1,12	28	1	252	3–10	2,06	3,09			
4A112MA6CY1			380/660	7,4/4,3							0,86	48	1	432		6,02	3,12	
			500	5,63	Y						0,96	57	1	333		3,73	2,99	

Z2

51

 G_1

3,42

3,51

3,37

3,42

r₁

0,498

1,51

4,77

2,65

4A112MA8Y3 4A112A8Y3	2,2	700	127/220	18,4/10,6	Δ/Υ	191/132	100	0,3	48	Однослой- ная	0,96	23*	1	184	1-8; 2-7	0,945	3,04	44	
4A112MA8T2 4A112MA8Y2			220/380	. 10,6/6,1						1102	1 <u>,</u> 04	39	1	312	- ,	2,73	3,03		
4A112MA8XY3 4A112MA8CY1			380/660	6,1/3,6							0,80	67	1	536		7,91	3,08	:	
			500	4,68	Y						0,93	51	1	408		4,46	3,16		
4A112MB8Y3	3	700	127/220	32,3/13,5	Δ/Υ	191/132	130	0,3	48	Однослой-	1,03	18*	1	144	1-8; 2-7	0,668	3,45	44	
4A112MB8T2 4A112MB8Y2			220/380	13,5/7,8						къп	1,20	31	1	248	2-1	1,87	3,68		
4A112MB8XY3 4A112MB8CY1			380/660	7,8/4,5							0,90	53	1	424		5,67	3,52		
			500	5,93	Y						1,04	41	1	328		3,28	3,65		
марки ПЭТ-155	чные ктро	е данны Эдвигат	ие приве, гелей нор	дены для ч омального	исполне	ния прим		•		иарки ПЭТЕ оопического				ых эле	ктродви	гателе	ей —	провод	1

Тип электродви-

гателя

4A112MB6Y3

4AB112 B6Y3

4A112MB6T2

4A112MB6Y2

4A112MB6XY3

4A112MB6CY1

Ρ,

кВт

n,

мин-1

950

Uı

127/220

220/380

380/660

500

I₁,

Α

27,4/15,9

15,8/9,1

9,1/5,3

6,95

Соедине-

ние фаз

 Δ / Y

Υ

D_c/d_c,

мм

191/132

δ,

ММ

0,3

Zı

54

Тип обмотки

Однослой-

ная

L, MM

125

Стагор

Диаметр

провода

1.16

1,25

0.93

1,08

Sn

13*

23

40

30

a₁

WKI

112

207

360

270

y1

1-12;

2-11;

3-10

Таблица 8.17.	Обмоточные данные	е электродвигателей	серии	4A132

Соеди-

Статор

Тип электродви- гателя	Р, п, кВт мин ⁻¹		U₁ B	11, A	нение фаз	D _c /d _c ,	L, mm	δ, мм	Z ₁	Тип об- мотки	Диаметр провода	S _n	aı	W _{K1}	y 1	r ₁	G ₁	Z ₂
4A132S6P3Y3	5,5	969	127/220	37/21	Δ/Υ	225/158	115	0,35	54	Одно-	1,35	12*_	1	108	1-12; 2-11;	0, 34 8	4,35	51
4A132S6P3T2 4A132S6MPOM5			220/380	21/12	YY/Y					слойная	1,04	20*	1	180	3–10	0,976	4,33	
4A132S6НУ3			220/440	21/11	Δ/Υ			,		Двух-	1,30	12x2	2/1	108/216	1-8	0,341/1,365	3,70	
4A132A6Y3 4A132S6Y3			230/400	20/12	Δ/Υ					слойная	1,0	21*	1	189		1,11	4,18	
4A132S6T2			240/415	19/11	Δ/Υ						1,40	22	1	198		1,185	4,30	
4A132S6Y2 4A132S6XY3			380/660	12/7,1	Δ/Υ					Одно-	1,12	35	1	315	1-12; 2-11;	2,93	4,38	
4A132S6 СУ 1 4A132S6XЛ 1			40 0	12	Δ					слойная	1,08	36	1	324	3–10	3,26	4,20	
4A132S6Π2 У 4			415	11	Δ						1,04	38	1	342		3,71	4,10	
			42 0	11	Δ		i				1,04	38	1	342		3,71	4,10	
			440	11	Δ						1,04	40	1	360		3,91	4,33	
			500	9,3	Y						1,30	26	1	234		1,624	4,38	
4A132M6P3Y3	7,5	960	127/220	48/28	Δ/Υ	225/158	160	0,35	54	Одно-	1,25	9**	1	81	1-12; 2-11;	0,239	4,94	51
4A132M6P3T2 4A132M6MPOM5			220/380	28/16	YY/Y					слойная Двух- слойная	1,20	15*	1	135	3-10	0,649	5,10	
4A132M6HY3			220/440	28/14	Δ/Υ						1,04	9*x2	2/1	81/162	1-8	0,239/0,955	4,24	
4A132 B6y3 4A132 B6y3			230/400	27/15	Δ/Υ						1,16	16*	1	1 44		0,738	5,05	
4A132M6T2 4A132M6Y2			240/415	26/15	Δ/Υ					~	1,16	16*	1	144		0,738	5,05	
4A132M6XY3			380/660	15/9,4	Δ/Υ					Одно-	1,30	26	1	234	1-12; 2-11;	1,906	5,15	
4A132M6Cy1 4A132M6XЛ1			40 0	15	Δ					слойная	1,25	27	1	243	3-10	2,14	4,95	
4A1 32M6Π2Y4			415	15	Δ		:				1,20	29	1	261	:	2,51	4,92	
			420	15	Δ						1,20	29	1	261		2,51	4,92	
	-		440	14	Δ						1,20	30	1	270		2,59	5,10	
		500	12	Υ			!			1,04	20*	1	180		1,15	5,07		

Zο

34

G١

5.44

5,27

5.17

5,11

5,33

5.30

5.18

5,44

5,44

5,27

5,2

6,09

6,14

6,09

6.02

6,05

6.21

5,98

6,19

6,19

6,14

6,26

34

ľ1

0.193

0.251

0.189/0.757

0,650

0.676

1.70

1,93

2.02

2.02

2.29

1.01

0.121

0.346

0.121

0.484

0,398

0.418

1.045

1.16

1.20

1,1385

0,583

4A132M4P3T2		220/380	38/22	YY/Y	}			слойная	1,04	32*	1	96	3-10
4A132M4MPOM5 4A132M4HY3		220/440	38/19	Δ/Υ					1,35	19*	2/1	57/114	
4A132 B4Y3		230/400	36/21	Δ/Υ	1				1,0	34*	1	102	
4A132 B4Y3 4A132M4T2		240/415	35/20	Δ/Υ				•	1,40	35	1	105	
4A132M4Y2		380/660	22/13	Δ/Υ					1,12	56	1	168	
4A132M4XY3 4A132M4CY1		400	21	Δ					1,08	58	1	174	
4А1 32М4ХЛ1		415	20	Δ					1,08	60	1	180	
4А1 32М4П2У4		420	20	Δ					1,08	60	1	1 80	
		440	19	Δ					1,04	64	1	192	
		500	17	Y					1,30	42	1	1 26	
Примечани 1. Класс из 2. Для эле	золяции В	для элег	ктродви	гателей	нормал	о исп	олнен		-				

Соели-

нение

фаз

 ΔN

YYY

۸٨

 ΔN

 ΔN

 ΔN

Δ

Δ

Δ

Δ

Υ

 ΔN

D_c/d_c,

мм

225/145

225/145

160

0.35 36

11.

Α

45/26

26/15

26/13

25/14

24/14

15/18,7

14

14

14

14

13

66/38

Ρ.

кВт

7.5

n.

мин⁻¹

1450

U1

127/220

220/380

220/440

230/400

240/415

380/660

400

415

420

440

500

127/220

1450

11

Тип электродви-

гателя

4A132S4P3V3

4A132S4P3T2

4A132S4HY3

4A132A4Y3

4A132S4Y3

4A132S4T2 4A132S4Y2

4A132S4XY3

4A132S4CY1 4A132S4XЛ1

4A132S4Π2Y4

4A132M4P3V3

4A132M4P3T2

4A132S4MPOM5

- 1. K
- провод марки ПЭТ-155. 2. L

Статор

a1

2/1

Wet

78

132

75/150

138

144

228

240

252

252

264

174

57

٧ŧ

1-12: 2-11:

3 - 10

1-12: 2-11:

3 - 10

Sa

13**

22*

25*

23*

24

38

40

42

42

44

29*

19*

Тип об-

мотки

Одно-

слойная

Одно-

слойная

Диаметр

провода

1.35

1,25

1.16

1.20

1.20

1.35

1,30

1,30

1,30

1,25

1,08

1,35

δ.

мм

0.35 36

Z١

L.

мм

115

Z2

G1,

ſį,

Таблица 8.18. Обмоточные данные электродвигателей сврий 4А160 и 4А180 Статор

Тип обмотки

Диаметр

aı

 W_K1

Уį

 m_1

Тип электро-

двигателя

П,

мин-1

Uı, B

11, A

D_c/d_c,

δ,

Z1

двигателя	Bi	мин			MM	MM	MM	Z ₁	Тип обмотки	провода, мм	Пэт	m ₁	aı	W _K 1	У1	Ом	ΚΓ	Z2	
4A160S2	15	2940	220/380	48,1/27,8	272/155	110	0,8	36	Двухслойная пет-	1,20	16+16	2	2	96	1-13	0,288	9,0	28	
			380/660	27,8/16,0					левая	1,30	28+28	1		168		0,860	9,2		ω
4A1 60M2	18,5	2940	220/380	58,4/33,7	272/155	130	0,8	36		130	14+14	2	2	84	1-13	0,226	9,7	28	l I
			380/660	33,7/19,6						1,40	24+24	1		144		0,670	9,6		Обмоточные
4A160S4	15	1470	220/380	49,5/28,6	272/185	140	0,5	48	Однослойная,	1,25	27	2	2	108	1-12; 2-11	0,270	9,9	41	μοτ
			380/660	28,6/16,5					концентрическая вразвалку	1,35	47	1		188	,	0,810	10,9		НЬ16
4A160M4	18,5	1470	220/380	59,1/34,2	272/185	180	0,5	48	, , ,	1,40	22	2	2	88	1-12; 2-11	0,196	11,3	41	е да
			380/660	34,2/19,8						1,50	38	1		152		0,592	11,2		품
4A160S6	11	970	220/380	38,2/22,1	272/197	145	0,45	54	Однослойная	1,16	46	1	3	138	1-12; 2-11;	0,52	7,9	50	данные электрических машин
		_	380/660	22,1/12,8					концентрическая	1,08	2 7	2	1	243	3–10	1,59	8,1		пек
4A1 60M6	15	970	220/380	51,0/29,5	272/197	200	0,45	54		1,35	34	1	3	102	1-12; 2-11;	0,33	9,2	50	mpu
			380/660	29,5/17,1						1,25	20	2	1	180	3–10	1,02	9,3		lyec
4A160S8	7,5	734	220/380	30,6/17,6	272/197	145	0,45	48		1,30	42	1	2	168	1-8; 2-6	0,672	7,3	44	Kux
			380/660	17,6/10,8						1,00	72	1	2	288		1.95	7,3		Ма
4A160M8	11	734	220/380	43,8/25,3	272/197	200	0,45	48		1,08	30	2	2	120	1-8; 2-6	0,412	8,4	44	luu.
			380/660	25,3/14,6						1,16	52	1	2	208		1,24	8,5		
4A180S2	22	2950	220/380	71,0/40,9	313/171	110	1,0	36	Двухслойная рав-	1,25	14+14	3	2	84	1-12; 1-13	0,15	12,5	28	
			380/660	40,9/23,7					носекционная	1,16	24+24	2	2	144		0,449	12,3		
4A180M2	30	2950	220/380	94,0/54,2	313/171	145	1,0	36		1,50	10+10	3	2	60	1-12; 1-13	0,087	14,8	28	
			380/660	54,2/31,4						1,35	18+18	2	2	108		0,23	14,4		173

Z2

38

38

G1,

13,2

13.2

14,5

ſţ,

Ом

-,151

0.49

0,099

y1

1-12; 2-11;

3-10

1-12: 2-11:

3-10

1,5

1,5

1,45

1,40

19,7

19,5

21,0

20,7

0,067

0,203

0,051

0,160

28

28

			380/660	54,4/31,6						1,35	29	2	2	116	3-10	0,288	14.4	
180 M 6	18,5	976	220/380	62,4/36,0	313/220	145	0,45	72	Двухспойная рав-	1,35	10+10	2	2	120	1-11	0,24	12,1	58
			380/660	36,0/20,7					носекционная	1,45	18+17	1	2	210		0,378	12,2	
180 M 8	15	730	220/380	56,3/32,3	313/220	170	0,45	72		1,25	23+23	1	4	138	1-8	0,32	11,7	58
			380/660	32,3/18,6						1,35	20+20	1	2	240		0,95	11,9	
2. Март 3. Клас 4. Одно	ка пр с изо остор	овода ляции онняя	об м откі і F. толщин	аз статора и статора на пазовой цля 2р = 4	ПЭТ-15 изоляц	5. ции (6; для 2р = (5: 18; 18; 17	7; 1 7 ; 18	; 18						
, · · · · · · · · · · · · · · · · · · ·	·			Табл	лица 8.19	9. 06	імот (очнь	іе данные элекі	продвигат	елей сер	uu 4	4200					
п электр0-	Р,	п.	U ₁ ,	<i>Табл</i>		9. 06	бмот	очнь	іе данные элекі		елей сер втор	uu 4	4200					Ротор

(10+10)4

(17+17)3

(8+8)5

(15+15)3

1-12

1-12

2

2

Статор

Па1

23

40

17

a۱

2

Wx 1

92

m 1

3

2 2 160

4

Диаметр

провода, мм

1,25

1.16

1.25

Тип обмотки

Одно- и двух-

слойная

Ρ,

Вт

22

30

37

45

2945

2945

220/380

380/660

220/380

380/660

MNH-1

1470

1470

U₁, B

220/380

380/660

220/380

I1. A

69,2/40,0

40,0/23,2

D_c/d_c,

ММ

313/211

349/194

349/194

130

160

0.9

0,9

36

36

 Δ/Y

 Δ/Υ

70

83,8

94,0/54,4 313/211 185

δ,

мм

0,6

мм

145 0.6 48

Z1

Тип электро-

двигателя

4A180S4

4A180M4

4A180M6

4A180M8

Тип электро-

двигателя

4A200M24

4A200L2

Тип электро-	D.	_	ļ ,,.	1 ₁ , А, при						Статор						Ротор
двигателя	Р, Вт	п, мин ^{.1}	U ₁ , B	U = 380 B	D _c /d _c ,	L, MM	δ, мм	z ₁	Соединение фаз	Sn	y 1	aı	Диаметр про- вода, мм	Gι, κΓ	r ₁ , Ом	Z ₂
4A200M4	37	1475	220/380	68,8	349/238	170	0,7	48	Δ/Υ	(9+8)4	1-11	2	1,35	17,6	0,090	38
			380/660							(14+15)3			1,20	18,1	0,259	1
4A200L4	45	1475	220/380	82,6	349/238	215	0,7	48	Δ/Υ	(7+7)5	1-11	2	1,35	20,5	0,065	38
			380/660							(12+12)3			1,30	19,5	0,202	
4A200M6	22	975	220/380	41,3	349/250	160	0,5	72	Δ/Υ	(14+14)2	1-11	3	1,25	15,9	0,193	58
			380/660							(16+16)2		2	1,16	15,6	0,575	
4A200L6	30	980	220/380	56	349/250	185	0,5	72	Δ/Υ	(11+11)2	1-11	3	1,40	16,8	0,129	58
			380/660							(19+19)			1,50	16,6	0,389	
4A200M8	18,5	735	220/380	37,8	349/250	160	0,5	72	Δ/Υ	(11+12)2	1-8	2	1,40	13,5	0,234	58
			380/660							(19+19)2			1,04	13,1	0,750	
4A200L8	22	730	220/380	45	349/250	185	0,5	72	Δ/Υ	(19+19)	1-8	4	1,50	14,5	0,195	58
			380/660							(33+33)			1,12	14,5	0,608	
4AH200M2	55	2940	220/380	93	349/194	160	0,9	3 6	Δ / Υ	(8+8)6	1-12	2	1,35	20,6	0,046	28
			380/660							(13+14)4			1,25	19,8	0,136	
4AH200L2	75	2940	220/380	137	349/194	200	0,9	36	Δ/Υ	(6+7)6	1-12	2	1,50	22,4	0,033	28
			380/660							(11+11)5			1,25	22,0	0,094	
4AH200M4	45	1475	220/380	84,4	349/238	170	0,7	48	Δ/Υ	(8+8)4	1-12	2	1,40	18,2	0,079	38
			380/660							(14+13)3			1,25	18,3	0,223	
4AH200L4	55	1475	220/380	102	349/238	215	0,7	48	Δ/Υ	(6+7)4	1-11	2	1,56	20,4	0,057	38
			380/660							(11+11)4			1,20	20,3	0,163	
4AH200M6	30	975	220/380	57,7	349/250	2 15	0,5	72	Δ/Υ	(12+12)2	1-11	3	1,35	15,9	0,141	58
			380/ 6 60							(21+21)	1	1	1,45	15,6	0,420	

 Z_2

58

G₁,

KΓ

17,8

rı,

Ом

0,095

Диаметр про-

вода, мм

1,25

1-12

1-11

1-11

45

78

52

90

80

144

24,8

24,7

25,8

25,1

21,3

21,6

0,042

0,124

0,05

0,146

0.098

0,31

28

38

56

aı

3

y1

1-11

											1	- 1			1	1	
			380/660							(15+16)2			1	,16	17,5	0,285	
4AH200 M 8	22	730	220/380	42	349/250	260	0,5	72	Δ/Υ	(10+10)3	1-11	2	1	,20	14,9	0,210	58
			380/660							(17+17)2			1	,12	14,7	0,623]
4AH200L8	30	730	220/380	62	349/250	260	0,5	72	Δ/Υ	(14+14)2	1-8	4	1	,25	18,6	0,125	58
			380/660							(24+24)			1	,35	18,5	0,370	
3. IOJII	ійна і	клина	2.5 мм.														
 Hepa 	внові	итковь	2 при ша	re 1—12 ч	е ре дован	ие сл	гедует	выл	ечетном шаге олнять: 17; 1 электродеи	8; 17, адл	я двига:	геля 4	A200M				
4. Нера иля двигател	внові	итковь	ие катуш 2 при ша	re 1—12 ч	е ре дован	ие сл	гедует	выл	олнять: 17; 1	8; 17, адл	я двига [.] рий 4A2	геля 4	A200M				

1,45

1,56

1,40

1,30

1,30

1,20

Соединение

фаз

 Δ/Y

P,

Вт

37

П,

мин⁻¹

980

Ut.

220/380

Іт, А, при

U = 380 B

70,7

D_c/d_c,

мм

349/250

392/208

392/264

392/284

180

200

175

1,0

0,85

0.6

36

48

72

168/97,4

97,4/56,5

169/97,9

97,9/56,9

118/68

68,1/39,4

δ, мм

0,5

мм

215

Zt

72

Тип электро-

двигателя

4AH200L6

4A225M2

4A225M4

4A225M6

55

55

37

2980

1480

980

220/380

380/660

220/380

380/660

220/380

380/660

Статор

Sπ

(9+9)3

7+8

13+13

13+13

23+22

10+10

12+12

6

3

3

2

3

3

2

2

4

4

3

2

Zo

56

40

50

50

56

56

56

56

G1.

19,4

19.3

33

33

34.8

35

39.6

38

43.8

40

rı,

Ом

0,112

0.336

0,0233

0.074

0.019

0.059

0,028

0.092

0.0233

0.077

45	980	220/380	142/82	437/317	180	0,7	72	1,30	9+9	4	3	72	1-11	26,6	0,069
		380/660	82,1/47,4					1,40	15+16	2	3	124		2 6,6	0,205
55	980	220/380	173,8/100,5	437/317	200	0,7	72	1,40	7+8	4	3	60	1-11	27	0,052
		380/660	100,5/58,1		 			1,25	13+13	3	3	104		27,9	0,15
45	740	220/380	125/72,4	437/317	180	0,7	72	1,40	15+15	2	4	90	1-8	22,7	0,098
		380/660	73,4/42,4					1,56	25+25	1	4	150		23,5	0,264
45	740	220/380	152/87,8	437/317	220	0,7	72	1,62	12+12	2	4	72	1-8	26,8	0,065
		380/660	87,8/50,7					1,20	21+21	2	4	126		25,8	0,207
инени а про тка д сторо	не фаз овода цвухсл онняя	обмотки ойная ра толщина	статора ПЗ вносекцион	ЭТ-155. нная.	0,4 N	1M.									
	55 45 45 46 47 48 44 48 48 48 48 48 48 48 48 48 48 48	55 980 45 740 45 740 45 740 ания. нение фаза провода тка двухсл	380/660 55 980 220/380 380/660 45 740 220/380 380/660 45 740 220/380 380/660 ания. нение фаз обмотки а провода обмотки тка двухслойная ра	380/660 82,1/47,4 55 980 220/380 173,8/100,5 380/660 100,5/58,1 45 740 220/380 125/72,4 45 740 220/380 152/87,8 380/660 87,8/50,7 ания. а провода обмотки статора Δ а провода обмотки статора ПЗтка двухслойная равносекциогсторонняя толщина пазовой из	380/660 82,1/47,4 55 980 220/380 173,8/100,5 380/660 100,5/58,1 45 740 220/380 125/72,4 437/317 380/660 73,4/42,4 45 740 220/380 152/87,8 437/317 380/660 87,8/50,7 ания. а провода обмотки статора Δ/Y . а провода обмотки статора ПЭТ-155. тка двухслойная равносекционная. сторонняя толщина пазовой изоляции	380/660 82,1/47,4 55 980 220/380 173,8/100,5 380/660 100,5/58,1 45 740 220/380 125/72,4 437/317 180 380/660 73,4/42,4 45 740 220/380 152/87,8 437/317 220 380/660 87,8/50,7 ания. анение фаз обмотки статора Δ/Y . а провода обмотки статора ПЭТ-155. тка двухслойная равносекционная. сторонняя толщина пазовой изоляции 0,4 м	380/660 82,1/47,4 55 980 220/380 173,8/100,5 380/660 100,5/58,1 45 740 220/380 125/72,4 437/317 180 0,7 380/660 73,4/42,4 45 740 220/380 152/87,8 437/317 220 0,7 380/660 87,8/50,7 анение фаз обмотки статора Δ/Y . а провода обмотки статора ПЭТ-155. тка двухслойная равносекционная. сторонняя толщина пазовой изоляции 0,4 мм.	380/660 82,1/47,4 55 980 220/380 173,8/100,5 380/660 100,5/58,1 45 740 220/380 125/72,4 437/317 180 0,7 72 380/660 73,4/42,4 45 740 220/380 152/87,8 437/317 220 0,7 72 380/660 87,8/50,7 204449. а провода обмотки статора Δ/Y . а провода обмотки статора ПЭТ-155. тка двухслойная равносекционная. сторонняя толщина пазовой изоляции 0,4 мм.	380/660 82,1/47,4 1,40 1,40 1,40 55 980 220/380 173,8/100,5 437/317 200 0,7 72 1,40 380/660 100,5/58,1 1,25 1,25 45 740 220/380 125/72,4 437/317 180 0,7 72 1,40 380/660 73,4/42,4 1,56 45 740 220/380 152/87,8 437/317 220 0,7 72 1,62 380/660 87,8/50,7 1,20 20449. В тенение фаз обмотки статора Δ/Y . а провода обмотки статора ПЭТ-155. Тка двухслойная равносекционная. сторонняя толщина пазовой изоляции 0,4 мм.	380/660 82,1/47,4 1,40 15+16 55 980 220/380 173,8/100,5 437/317 200 0,7 72 1,40 7+8 380/660 100,5/58,1 1,25 13+13 45 740 220/380 125/72,4 437/317 180 0,7 72 1,40 15+15 380/660 73,4/42,4 1,56 25+25 45 740 220/380 152/87,8 437/317 220 0,7 72 1,62 12+12 380/660 87,8/50,7 1,20 21+21 ания. нение фаз обмотки статора Δ/Υ. а провода обмотки статора ПЭТ-155. тка двухслойная равносекционная. сторонняя толщина пазовой изоляции 0,4 мм.	380/660 82,1/47,4 1,40 15+16 2 55 980 220/380 173,8/100,5 437/317 200 0,7 72 1,40 7+8 4 380/660 100,5/58,1 1,25 13+13 3 45 740 220/380 125/72,4 437/317 180 0,7 72 1,40 15+15 2 380/660 73,4/42,4 1,56 25+25 1 45 740 220/380 152/87,8 437/317 220 0,7 72 1,62 12+12 2 380/660 87,8/50,7 21,20 21+21 2 ания. нение фаз обмотки статора Δ/Υ. а провода обмотки статора ПЭТ-155. тка двухслойная равносекционная. сторонняя толщина пазовой изоляции 0,4 мм.	380/660 82,1/47,4 1,40 15+16 2 3 55 980 220/380 173,8/100,5 437/317 200 0,7 72 1,40 7+8 4 3 380/660 100,5/58,1 1,25 13+13 3 3 45 740 220/380 125/72,4 437/317 180 0,7 72 1,40 15+15 2 4 380/660 73,4/42,4 1,156 25+25 1 4 45 740 220/380 152/87,8 437/317 220 0,7 72 1,62 12+12 2 4 380/660 87,8/50,7 1,20 21+21 2 4 380/660 87,8/50,7 1,20 21+21 2 4 380/660 87,8/50,7 1,20 21+21 2 4 380/660 87,8/50,7 1,20 21+21 2 4 380/660 87,8/50,7 1,20 21+21 2 4	380/660 82,1/47,4 1,40 15+16 2 3 124 55 980 220/380 173,8/100,5 437/317 200 0,7 72 1,40 7+8 4 3 60 380/660 100,5/58,1 1,25 13+13 3 3 104 45 740 220/380 125/72,4 437/317 180 0,7 72 1,40 15+15 2 4 90 380/660 73,4/42,4 150 45 740 220/380 152/87,8 437/317 220 0,7 72 1,62 12+12 2 4 72 380/660 87,8/50,7 1,20 21+21 2 4 126 ания. нение фаз обмотки статора Δ/Υ. а провода обмотки статора ПЭТ-155. тка двухслойная равносекционная. сторонняя толщина пазовой изоляции 0,4 мм.	380/660 82,1/47,4 1,40 15+16 2 3 124 55 980 220/380 173,8/100,5 437/317 200 0,7 72 1,40 7+8 4 3 60 1−11 380/660 100,5/58,1 1,25 13+13 3 3 104 45 740 220/380 125/72,4 437/317 180 0,7 72 1,40 15+15 2 4 90 1−8 380/660 73,4/42,4 150 1,56 25+25 1 4 150 45 740 220/380 152/87,8 437/317 220 0,7 72 1,62 12+12 2 4 72 1−8 380/660 87,8/50,7 1,20 21+21 2 4 126 ания. нение фаз обмотки статора Δ/Y. а провода обмотки статора ПЭТ-155. тка двухслойная равносекционная. сторонняя толщина пазовой изоляции 0,4 мм.	380/660 82,1/47,4

Статор

m₁

3

1

8

6

9

6

4

2

5

3

a۱

2

4

2

2

2

4

4

4

WKI

96

162

36

64

32

56

45

80

40

70

٧t

1-8

1-15

1-15

1-13

1-13

Nat

8+8

27+27

4+5

8+8

4+4

7+7

9+9

16+16

8+8

14+14

Ρ.

Вт

30

75

90

75

90

n,

MUH-1

740

2960

2960

1480

1480

Тип электро-

двигателя

4A225M8

4A250S2Y3

4A250M2 Y3

4A250S4 Y3

4A250M4 Y3

Ut.

220/380

380/660

220/380

380/660

220/380

380/660

220/380

380/660

220/380

380/660

lı,

105,5/61

63/36.4

230/133,5

134/77,3

275/158.4

158/91,7

230/131,7

132/76,2

270/156,5

157/90.8

D_c/d_c,

мм

392/284

437/232

437/232

437/290

437/290

δ.

мм

0.6

1.2

1.2

1,0

1.0

мм

175

200

230

220

230

Z١

72

48

48

60

60

Диаметр про-

вода, мм

1.50

1,40

1.56

1,35

1.56

1.45

1.56

1,62

1.50

1.40

- 6. Чередование катушек у двигателя 4A225 для 2p = 2: 7; 8; 7; 8; ...; для 2p = 4: 23; 23; 22; 22; 23; 23;
- 7. Чередование катушек у двигателя 4A250 для 2p = 2: 4; 4; 5; 5; 4; 4; 5; 5; ...; для 2p = 6: 15; 15; 16; 16; 15; 16; 16; ...

1.95×4.1

1,25x4,1

1,08×3,53

1.08×3.53

1.35×3.53

1.35×3.53

1,95x3,53

1,95×3,35

1.25×2.53

1.25x3.53

1.81×3.05

1.81 x3.05

1.08×3.05

1.08×3.05

1.68x3.05

1,68×3,05

1.0×3.05

1.0x3.05

4

6

13

13

11

11

13

13

11

11

6 u 7*3

6 и 7*³

11

11

7

7

11 u 12

11 u 12

75.0

74.0

63.5

63,5

71.5

71.5

75.0

75,0

72,4

72,4

47,5

47,5

52,0

52.0

49,3

49,3

49.8

49.8

0,0129

0.0308

0.0511

0,0511

0.0359

0.0359

0.0175

0,0175

0,053

0,053

0.0314

0.0314

0.0255

0.0255

0.0382

0,0382

0,0287

0.0287

50

72

50

72

50

72

50

72

82

81

82

81

82

81

82

81

электрических машин

		•					•	•			-					
	.,							Ста	гор		- 200					Ротор
	Մ ₁ , В	A A	D _c /d _c ,	L,	δ, мм	Z ₁	Тип обмотки	y ₁	n _{a1}	m ₁	aı	W _K 1	axb ₁ или d _{np} , мм	G ₁ , кг	r ₁ , O _M	Z2
	380/660	288/1 66	520/275	165	1,3	48	Двухслойная петлевая	1-15	5 2	4	2	6 и 7* ¹	1,16 ×4,1	67,9	0,0343	38
-	380/660	· 359/207		230			концентрическая	1-14	44			5 и 6* ²	1,35×4,1	71,7	0,0264	

1-16

1-16

1-12 52 2 4

32

48

52

44

44

52

52

44

44

26

26

44

44

28

56

46

46

2

6

6

3

3

6

6

1 - 10

1-11

Таблица 8.21. Обмоточные данные электродеигателей серий 4A280. 4A315 и 4A355

Двухслойная петлевая

концентрическая

Двухолойная петлевая

концентрическая

359/207
355/255
248/142,
243/141
246/142

291/168

295/171

337/195

347/200

234/135

238/137

289/167

298/172.5

346/200

363/210

240/138

246/143

286/165

294/170

175

205

205

206

235

235

220

220

240

240

200 8.0

200

230

230

190

190

225

225

0.9

525/335

520/370

220/380

380/660

380/660

380/660

380/660

380/660

220/380

220/380

380/660

380/660

220/380

220/380

220/380

220/380

220/380

220/380

220/380

220/380

Тип электро-

двигателя

4AH280S2

4AH280M2

4A280S2

4A280M2

4AH280S4

4AHK280S4

4AH280M4

4AHK280M4

4A280S4

4AK280S4

4A280M4

4AK280M4

4AH280S6

4AHK280S6

4AH280M6

4AHK280M6

4A280S6

4AK280S6

4A280M6

4AK280M6

n, мин-1

160 2965

200 2965

110 2970

132 2970

132 1470

132 1455

160 1470

160 1455

110 1470

110 1455

132

132 1465

90 980

90 970

110

110

75 980

75 980

90 985

90 970

1475

980

970

7				,						Ста	тор							Ротор
Тип электро- двигателя	P, Bt	п, м ин ⁻¹	U ₁ , B	l ₁ , A	D _c /d _c ,	L,	δ, м м	z ₁	Тип обмотки	y 1	Пэ1	m ₁	a ₁	W _K 1	axb ₁ или d _{пр} , мм	G1, KF	г ₁ , Ом	Z 2
4AH280S8	75	735	220/380	253/145	520/385	210	0,8	72	Двухслойная петлевая	1-9	40	4	2	5	1,25×3,28	53,0	0,0367	86
4AHK280S8	75	720	220/380	260/150		210			концентрическая		40	4	2	5	,25x3,28	53,0	0,0367	84
4AH280M8	90	735	220/380	300/173		240					36	2	4	9	1,45×3,28	58,8	0,0297	86
4AHK280M8	90	720	220/380	313/180		240					36	2	4	9	1,45×3,28	58,8	0,0297	84
4A280S8	55	735	220/380	188/108	1	185				1-8	48	2	4	12	1,0×3,28	45,1	0,05	86
4AK280S8	55	725	220/380	193/11,5		185					48	2	4	12	1,0×3,28	45,1	0,05	84
4A280M8	75	735	220/380	248/143		250					36	2	4	9	1,35×3,28	52,9	0,0311	86
4AK280M8	75	730	220/380	256/148		250					36	2	4	9	1,35x3,28	52,9	0,0311	84
4AH280S10	45	585	220/380	162/93,8	520/400	185	0,7	90	Двухслойная концен-	1-9	96	8	2	6	Ø1,35	43,0	0,0547	106
4AHK280S10	45	575	220/380	170/98,5		185			трическая		96	8		6	Ø1,35	43,0	0,0547	120
4AH280M10	55	585	220/380	197/114		220					80	8		5	Ø1,5	48,0	0,0402	106
4AHK280M10	55	575	220/380	204/118		220					80	8		5	Ø1,5	48,0	0,0402	120
4A280S10	37	590	220/380	136/78,5		170			Двухслойная петлевая		96	3	5	16	Ø1,35	41,2	0,0599	106
4AK280S10	37	580	220/380	144,5/83,5		170			концентрическая	-	96	3		16	Ø1,35	41,2	0,0599	120
4A280M10	45	590	220/380	164/94,5		180					90	3		16	Ø1,48	42,6	0,0536	106
4AK280M10	45	580	220/380	171/98,8		180					90	3		16	Ø1,48	42,6	0,0536	120
4AH315M2	250	2970	380/660	442/256	590/310	210	1,5	48	Двухслойная петлевая	1-15	40	4	2	5	1,68×4,4	90,5	0,01824	38
4A315S2	160	2970	380/660	282/164	520/275	250	1,3			1-16	40			5	1,56×4,1	82,5	0,0226	
4A315M2	200	2970	380/660	351/203		310					32			4	2,1×4,1	93,4	0,0148	
4 A H315S4	200	1480	380/660	355/206	590/380	210	1,0	60	Двухслойная петлевая	1-13	40	2	4	10	1,56×3,53	77,0	0,0287	50
4AHK315S4	200	1470	380/660	367/212		210					40			10	1,56×3,53	77,0	0,0287	72
4AH315 M 4	250	1475	380/660	448/259		250				1-12	36			9	1,81x3,53	82,0	0,0225	50

										Ста	тор							Ротор	
Тип электро- двигателя	P, Bt	п, мин ⁻¹	U ₁ , B	11, A	D _c /d _c ,	Ĺ, MM	δ, мм	21	Тип обмотки	y 1	Пэт	m ₁	aı	W _K 1	axbı или d _{пр} , мм	G1, KF	г, Ом	Z2	
4AHK315M4	250	1470	380/660	447/258	590/380	250	1,0	60	Двухслойная петлевая	1-12	36	2	4	9	1,81×3,53	82,0	0,0225	72	
4A31 5S4	160	1480	380/660	282/164	520/335	290	0,9				40			10	1,56×3, 5 3	82,3	0,0306	5 0	
4AK315S4	160	1470	380/660	285/165		290					40			10	1,56x3,53	82,3	0,0306	72	9
4A315M4	200	1 480	380/660	351 /203		360					32			8	1,95×3, 5 3	96,0	0,0203	5 0	- 1
4AK315M4	200	1 470	380/660	348/201		3 60					32			8	1,95×3,53	96,0	0,0203	72	
4AH315S6	132	98 5	380/660	242/1 40	590/425	190	0,9	72	Двухслойная петлевая	1-10	40	2	3	10	1,35×3,53	65,0	0,058	82	Comonio
4AHK315S6	132	975	380/660	248/143		190					40]		10	1,35×3,53	65,0	0,058	81	
4AH315M6	160	985	380/660	293/169		220					34			8 и 9*4	1,56×3,53	67,5	0,0447	82	
4AHK31 5M6	160	975	380/660	297/171,5		220					34			8 и 9* ⁴	1,56×3,53	67,5	0,0447	81	9
4A315S6	110	985	220/380	346/200	520/370	275	0,8			1-11	3 6	2	6	9 и 10* ⁵	1,25×3,05	56,6	0,0203	82	
4AK315S6	110	975	220/380	359/207		275					3 6			9 и 10* ⁵	1,25×3,05	5 6,6	0,0203	81	
4A315M6	132	985	380/660	240/138		320					28		3	7	1,81×3,05	65,2	0,043	82	
4AK315M6	132	980	380/660	248/143		320					28			7	1,81×3,05	65,2	0,043	81	
4AH315S8	110	735	220/380	259/208	590/440	240	0,9	72	Двухслойная петлевая	1 –8	32	2	4	8	1,68×3,53	64,8	0,0222	86	;
4AHK315S8	110	730	220/380	370/214		240			,		32			8	1,68×3,53	64,8	0,0222	84	
4AH315M8	132	735	3 8 0/660	250/1 45		28 0					48			12	1,08×3,53	65,3	0,0527	86	
4AHK315M8	132	730	380/660	256/1 48		280					48			12	1,08×3,53	65,3	0,0527	84	1 1
4A315S8	90	740	220/380	300/173	520/385	300	0,8				30			7 и 8* ⁶	1,68×3,28	61,2	0,0228	8 6	!
4AK31 5S8	90	73 0	220/380	306/177		300			,		30			7 и 8* ⁶	1,68×3,28	61,2	0,0228	84	
4A315M8	110	740	220/380	363/209		37 0					48			6	1,0×3,28	63,2	0,017 5 5	86	
4AK315M8	110	7 30	220/380	368/212		370					48	<u> </u>		6	1,0×3,28	63,2	0,01755	84	
4AH315S10	·75	590	220/380	264/152,5	590/450	200	0,8	90	Двухслойная петлевая	1 –8	96	4	5	12	Ø1,4	47,6	0,0351	106	
4AHK315S10	75	580	220/380	270/156		200			концентрическая		9 6			12	Ø1 ,4	47,6	0,0351	120	

Tue allever			11	1.						Ста	тор							Ротор
Тип электро- двигателя	P, Bt	п, мин ⁻¹	U ₁ , B	l ₁ , A	D _c /d _c ,	L,	δ, м м	21	Тип обмотки	y 1	N ₃ 1	m ₁	aı	W _K 1	ах b 1 или d _{пр} , мм	G1, KF	г1, Ом	Z2
4AH315M10	90	590	220/380	315/182	590/450	240	0,8	90	Двухслойная петлевая	1-8	80	4	5	10	Ø1,56	54,2	0,0249	106
4AHK315M10	90	580	220/380	318,5/184		240			концентрическая	-	80			10	Ø1,56	54,2	0,0249	120
4A315S10	55	590	220/380	197,5/114	520/400	250	0,7			1-9	66	3	5	11	Ø1,62	50,0	0,0351	106
4AK315S10	55	580	220/380	216/125		250					66			11	Ø1,62	50,0	0,0351	120
4A315M10	75	590	220/380	260/150		305					72	4		9	Ø1,56	56,8	0,0261	106
4AK315M10	75	580	220/380	288/166,5		305					72			9	Ø1,56	56,8	0,0261	120
4AH315S12	55	490	220/380	204/118	590/450	200	0,8	90	Двухслойная петлевая	1–7	108	3	6	18	Ø1,3	45,0	0,0517	106
4AHK315S12	55	475	220/380	218/123		200			концентрическая		108			18	Ø1,3	45,0	0,0517	108
4AH315M12	75	490	220/380	277/160		240					78			13	Ø1,56	51,6	0,0292	106
4AHK315M12	75	480	220/380	288/166		240					78			13	Ø1,56	51,6	0,0292	108
4A315S12	45	490	220/380	171/99	520/400	250	0,7			1-8	64	4	3	8	Ø1,62	46,7	0,0512	106
4AK315S12	45	480	220/380	173/100		250					64			8	Ø1,62	46,7	0,0512	108
4A315M12	55	490	220/380	204/118		305					78	3	6	13	Ø1,5	55,0	0,0365	106
4AK315M12	55	485	220/380	208/120		305					78			13	Ø1,5	55,0	0,0365	108
4AH355S2	315	2970	380/660	545/315	660/345	210	1,8	48	Двухслойная петлевая	1-16	32	4	2	4	2,1×4,7	98,3	0,01165	38
4AH355M2	400	2970	380/660	685/396		265				1-15	42	6		3 и 4	1,56×4,7	103	0,00939	
4A355S2	250	2970	380/660	442/255	590/310	290	1,5			1-16	32	4		4	2,26×4,4	108,6	0,0126	
4A355M2	315	2970	380/660	542/313		360					42	6		3 и 4	1,68×4,3	114,2	0,01035	
4AH355S4	315	1485	380/660	545/315	660/435	245	1,2	60	Двухслойная петлевая	1-12	32	2	4	8	1,95×4,1	95,0	0,0164	50
4AHK355S4	315	1475	380/660	355/320		245					32			8	1,95×4,1	95,0	0,0164	72
4AH355M4	400	1485	380/660	702/406		305					52			6и7	1,16×4,1	98,4	0,0124	50

1,56×3,53

83,7

0,0311

84

36

T	_									Cra	тор							Ротор
Тип электро- двигателя	P, Br	п, мин ⁻¹	U ₁ , B	l ₁ , A	D _c /d _c ,	L,	δ, мм	21	Тип обмотки	У1	n₃1 ∣	m ₁	a ₁	W _K 1	axb; или d _{пр} , мм	G1, Kr	r1, Om	Z2
4AHK355M4	400	1475	380/660	706/408	660/435	305	1,2	60	Двухслойная петлевая	1-12	52	2	4	6и7	1,16×4,1	98,4	0,0124	72
4A355S4	250	1485	380/660	432/250	590/380	360	1,0				56	4	4	7	1,16×3,53	93,0	0,0161	50
4AK355S4	2 50	1480	380/660	447/259		360					56			7	1,16×3,53	93,0	0,0161	72
4A355M4	315	1485	380/660	537/310		450					48			6	1,35×3,53	104	0,01325	50
4AK355M4	315	1480	380/660	546/315		450			_		48			6	1,35×3,53	104	0,01325	72
4AH355S6	200	985	380/660	355/205	660/470	220	1,0	72	Двухслойная петлевая	1-10	60	2	6	15	1,0×3,53	76,4	0,0439	82
4AHK355S6	200	980	380/660	366/211,5		220					60			15	1,0×3,53	76,4	0,0439	81
4AH355M6	250	985	380/660	442/256		275					48			12	1,25×3,53	84,5	0,0224	82
4AHK355M6	250	980	380/660	452/261		275					48			12	1,25×3,53	84,5	0,0224	81
4A355S6	160	985	380/660	287/166	590/245	295	0,9				28		3	7	1,95×3,53	78,8	0,0329	82
4AK355S6	160	980	380/660	293/169		295					28			7	1,95×3,53	78,8	0,0329	81
4A355M6	200	985	380/660	358/206		370					44		2	11	1,25×3,53	87,0	0,0229	82
4AK355M6	200	985	380/660	364/210		370	<u>.</u>				44			11	1,25×3,53	87,0	0,0229	81
4AH355S8	160	740	380/660	291/168,5	600/490	250	1,0	72	Двухслойная петлевая	1 –8	48	2	4	12	1,08×4,1	74,3	0,0439	86
4AHK355S8	160	730	380/660	300/177		250				ļ	48			12	1,08×4,1	74,3	0,0439	84
4AH355M8	200	740	380/660	377/218		310					40			10	1,45×4,1	93,6	0,0298	86
4AHK355M8	200	730	380/660	273/215		310					40			10	1,45×4,1	93,6	0,0298	84
4A355S8	132	740	380/660	254/147	590/440	325	0,9				42			10 и 11	1,25×3,53	71,7	0,0517	86
4AK355S8	132	735	380/660	257/148,5		325					42			10 и 11	1,25×3,53	71,7	0,0517	84
4A355M8	160	740	380/660	301/174		375					36			9	1,56×3,53	83,7	0,0311	86
		705	000,000	004476		075				1	00		1	0	1 50. 0 50	00.7	0.0044	0.4

160 735

4AK355M8

380/660

304/176

375

G1, KT | T1, OM

axb; или d_{пр},

	1				MM	MM	MM		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	''			ļ		MM		.,,		
4AH355S10	110	590	220/380	379/219	660/500	225	0,9	90	Двухслойная петлевая	1-8	36	2	5	9	1,56×3,28	74,6	0,0207	106	
4AHK355S10	110	580	220/380	386/223]	225			концентрическая		36			9	1,56×3,28	74,6	0,0207	120	
4AH355M10	132	590	380/660	260/150,5		260					54			13 и 14	1,08×3,28	80,2	0,0448	106	
4AHK355M10	132	580	380/660	267/154,5		260					54			13 и 14	1,08×3,28	80,2	0,0448	120	
4A355S10	90	590	220/380	294/169,5	590/450	295	0,8				72	4		9	Ø1,62	59,2	0,0233	106	
4AK355S10	90	585	220/380	308/178		295					72			9	Ø1,62	59,2	0,0233	120	
4A355M10	110	5 9 0	220/380	357/206		355				1-9	70	5		7	Ø1,62	66,5	0,0167	106	
4AK355M10	110	585	220/380	360/208		355					70			7	Ø1,62	66,5	0,0167	120	
4AH355S12	90	490	220/380	332/192	660/500	225	0,9	90	Двухслойная петлевая	17	48	2	6	12	1,25×3, 2 8	74,2	0,0227	106	
4AHK355S12	90	480	220/380	360/208		225					48			12	1,25×3,28	74,2	0,0227	108	
4AH355 M 12	110	490	220/380	405/234		260					40			10	1,45×3,28	77,4	0,0174	106	ĺ
4AHK355M12	110	480	220/380	431/349		260					40			10	1,45×3,28	77,4	0,0174	108	
4A355S12	75	490	220/380	286/165	590/450	295	0,8		Двухслойная петлевая		66	3		11	Ø1,68	63,3	0,0266	106	
4AK355S12	75	485	220/380	294/170		295			концентрическая		66			11	Ø1,68	63,3	0,0266	108	
4A355M12	90	490	220/380	346/99,5		355					72	4		9	Ø1,62	71,3	0,0195	106	
4AK355M12	90	485	220/380	365/211		355					72			9	Ø1,62	71,3	0,0195	108	
	дова	ние в		катушке 6; катушке 5;				,			· <u> </u>			•			-		

Тип обмотки

Статор

n₃₁ | m₁ | a₁

Uı,

мин-1

l₁,

Α

D_c/d_c,

Тип электро-

двигателя

^{*3} Чередование витков в катушке 7; 6; 7; 6; ...

^{*4} Чередование витков в катушке 8; 9; 8; 9.

^{*&}lt;sup>5</sup> Чередование витков в катушке 9; 9; 10; 10; 9; 9; 10; 10.

^{*6} Чередование витков в катушке 7; 8; 7; 8; 7; 8.

^{1.} Соединение фаз обмотки статора при напряжении 220 В Д, при напряжении 380 В Ү.

^{2.} Односторонняя толщина пазовой изоляции для всех электродвигателей 0,55 мм.

^{3.} Класс нагревостойкости изоляции F.

8.4. Обмоточные данные роторов электродвигателей серий 4АНК и 4АК с высотой оси вращения 280—355 мм

Тип электро-	41.					Ротс	р фазный					
двигателя	U ₁	U ₂ , B	l ₂ , A	Z2	y ₂	П ₃₂	m ₂	a ₂	w φ	Размер провода, мм	G ₂ , Kr	r ₂
4AHK280S4	380/660	257	326	72	1-19	2	1	1	24	3,05 ×18,0	40,3	0,00915
4 A HK280M4	380/660	302	325								42,5	0,00965
4AK280S4	380/660	217	326								40,0	0,0091
4AK280M4	380/660	279	300								42,9	0,0098
4AHK280S6	220/380	206	277	81	1-15 и 1-14	2	1	1	27	3,05× 15,6	36,2	0,01095
4AHK280M6	220/380	233	303								38,1	0,01155
4AK280S6	220/380	183	261								34,5	0,0108
4AK280M6	220/380	223	256								36,5	0,0115
4AHK280S8	220/380	178	279	84	1-12 n 1-11	2	1	1	28	3,05× 15,6	34,5	0,01042
4AHK280M8	220/380	190	308								36,5	0,01085
4AK280S8	220/380	149	231								32,6	0,00983
4AK280M8	220/380	200	232								37,2	0,0112
4AHK280S10	220/380	160	177	120	1–13	2	1	1	40	2,63× 14,5	35,8	0,0169
4AHK280M10	220/380	185	180								37,3	0,0176
4AK280S10	220/380	151	153								34,9	0,0164
4AK280M10	220/380	162	169								35,4	0,0168
4AHK315S4	380/660	324	394	72	1-19	2	1	1	24	3,8× 19,5	61	0,00751
4AHK315M4	380/660	373	413								65	0,00798

Тип электро-						Рот	ор фазный						
двигателя	U ₁	U ₂ , B	I ₂ , A	22	y 2	N ₃₂	m ₂	a ₂	Wφ	Размер провода, мм	G ₂ , kr	L5	
4AK315S4	380/660	337	295	72	1-19	2	1	1	24	3,05× 18,0	46,4	0,0105	
4AK315M4	380/660	390	321								47,57	0,01037	
4AHK315S6	380/660	231	353	81	1-15 и 1-14	2	1	1	27	3,8× 16,8	49,8	0,00830	
4AHK315M6	380/660	272	361	1							52,5	0,00876	ļ a
4AK315S6	220/380	270	253							3,05× 15,6	41,4	0,01255	Оомоточные
4AK315M6	380/660	320	253								43,7	0,0135	Jmo
4AHK315S8	220/380	212	328	84	1-12 и 1-11	2	1	1	28	4,4× 14,5	51,9	0,00875	H H
4AHK315M8	380/660	247	364	1							55,5	0,00936	je o
4AK315S8	220/380	240	⁻ 231							3,05× 15,6	40,7	0,0124	оанные
4AK315M8	220/380	299	229								45,5	0,014	ые
4AHK315S10	220/380	214	221,5	120	1-13	2	1	1	40	2,83× 15,5	35,3	0,0154	эле
4AHK315M10	220/380	258	218,5								38,6	0,0166	Âb
4AK315S10	220/380	222	157,5							2,63× 14,5	40,6	0,0192	u4e
4AK315M10	220/380	272	. 172								45,0	0,0213	CKE
4AHK315S12	220/380	165	235	108	1-10	2	1	1	36	2,44× 16,8	34,8	0,01415	электрических машин
4AHK315M12	220/380	207	228								37, 7	0,0155	nme
4AK315S12	220/380	164	176							3,28× 11,6	35,2	0,0168	Ī
			1	-1	1	1	1	1	1	1			

				1		1	1					
4AK315M8	220/380	299	229								45,5	0,014
4AHK315S10	220/380	214	221,5	120	1-13	2	1	1	40	2,83× 15,5	35,3	0,0154
4AHK315M10	220/380	258	218,5								38,6	0,0166
4AK315S10	220/380	222	157,5							2,63× 14,5	40,6	0,0192
4AK315M10	220/380	272	. 172]							45,0	0,0213
4AHK315S12	220/380	165	235	108	1-10	2	1	1	36	2,44× 16,8	34,8	0,01415
4AHK315M12	220/380	207	228								37,7	0,0155
4AK315S12	220/380	164	176							3,28× 11,6	35,2	0,0168
4AK315M12	220/380	201	168								39,0	0,0187
4AHK355S4	380/660	420	460	72	1–19	2	1	1	24	4,4× 19,5	80,0	0,00753
4AHK355M4	380/660	515	485								86,6	0,00823

485

380/660

4AK355S4

330

0,0093

75,0

3,8× 19,5

192

ŏ. C
Оомоточные данные э
чные о
анные э
JIEKII
рических
машин

									· · · · · · · · · · · · · · · · · · ·			
4AK355M4	380/660	586	350	72	1-19	2	1	1	24	3,8× 19,5	83,7	0,01035
4AHK355S6	380/660	309	409	81	1-15 и 1-14	2	1	1	27	4,1×18,0	62,4	0,00784
4AHK355M6	380/660	385	393								68,2	0,00862
4AK355S6	380/660	333	296							3,8× 16,8	59, 1	0, 0 099
4AK355M6	380/660	425	288	1							66,5	0,01105
4AHK355S8	380/660	260	392	84	1-12 и 1-11	2	1	1	28	4,7× 15,6	64,4	0,00822
4AHK355M8	380/660	303	389								71,2	0,00908
4AK355S8	380/660	298	274							4,4× 14,5	60,73	0,010
4AK355M8	380/660	348	285								64,5	0,0109
4AHK355S10	220/380	283	239	120	1-13	2	1	1	40	2,83× 15,6	46,9	0,0167
4AHK355M10	380/660	327	250								50,1	0,0179
4AK355S10	220/380	289	195								50,3	0,01865
4AK355M10	220/380	355	223			÷					59,1	0,0207
4AHK355S12	220/380	282	259,5	108	1–10	2	1	1	36	2,44× 18,0	40,3	0,0146
4AHK355M12	220/380	26 5	265								43,2	0,0153
4AK355S12	220/380	217	187							2,44× 16,8	41,8	0,01715
4AK355M12	220/380	302	185	-								46,7

y2

Тип электро-

двигателя

Uı

1. Соединение фаз Ү.

4. Қласс изоляции F.

U₂, B

I₂, A

2. Односторонняя корпусная толщина пазовой изоляции 0,65 мм.

3. Обмотка ротора стержневая, двухслойная.

Z2

Ротор фазный

N₃2

 m_2

 a_2

Wφ

Размер провода, мм

G2, KF

ſ2

8.5. Обмоточные данные взрывозащищенных электродвигателей серии ВАО 0—9-го габаритов

Таблица 8.22. Обмоточные данные взрывозацишенных электродвигателей серии ВАО 0-го габарита

		=	·					•			тродвигате					•			n -
Тип элек-	P,	n,	U ₁ ,	Соеди-					ı———	1	Статор					1		r	Ротор
тродвига- теля	кВт	мин ⁻¹	В	фаз	l ₁ , A	D _c /d _c , MM	L, MM	δ, мм	Z ₁	y 1	Тип обмотки	Π ₃ 1	m ₁	a ₁ ·	W _K 1	Диаметр провода	G ₁	r ₁	Z ₂
BAO 071-2	0,4	2750	660/380	Υ/Δ	6,0/1,0	120/60	48	0,3	24	1-12; 2-11	Однослойная	225	1	1	225	0,31	0,66	79,3	19
			500	γ	0,8							171			171	0,35	0,69	47,4	
			380/220	Υ/Δ	1,0/1,7							130			130	0,41	0,72	26,3	
			220/127	Υ/Δ	1,7/3,0				_			75			75	0,55	0,74	8,42	
BAO 072-2	0,6	2750	660/380	Υ/Δ	0,8/1,4	120/60	60	0,3	24	1-12; 2-11	Однослойная	185	1	1	185	0,35	0,796	54,7	19
		500	Υ	1,2							140			140	0,41	0,82	30,2		
			380/220	Υ/Δ	1,4/2,5					,		107			107	0,47	0,82	17,5	
			220/127	Υ/Δ	2,5/4,4							62			62	0,62	0,826	5,85	
BAO 071-4	0,27	1400	660/380	Υ/Δ	0,6/1,0	120/72	48	0,3	24	1-8; 2-7	Однослойная	315	1	1	315	0,31	0,734	8,9	18
			500	Υ	0,7							240			240	0,35	0,775	53	
			380/220	Υ/Δ	1,0/1,7							183			183	0,41	0,805	29	
_			220/127	Υ/Δ	1,7/3,0							104			104	0,55	0,82	9,35	
BAO 072-4	0 072-4 0,4	1400	660/380	Υ/Δ	0,8/1,3	120/72	60	0,3	24	1-8; 2-7	Однослойная	251	1	1	251	0,35	0,87	60	18
			500	Υ	1,0							190			190	0,41	0,9	33,2	
			380/220	Υ/Δ	1,3/2,3							146			146	0,47	0,91	19,5	
			220/127	Υ/Δ	2,3/4,0							84			84	0,62	0,91	6,4	

C	2	c	
•			
(_		
(=)	١
:	S	•	
:	=	3	
ì		١	
١	ī	_	
:	1		
	7	•	
ς)	
į	7	•	
:	i	_	
:	Ī		
Į	Į		
(I)	
ţ)	
Ġ	Ì	5	
֡	2		
:	=	ζ	
Ċ	=	2	
•	č		
٥	Ī	9	
		?	
\$	=		
2	*	(
	ς		
	1	?	
Ì	=	:	
	1	:	
		•	

Тип элек-			l	Соеди-							Статор								Ротор
тродвига- теля	P, ĸBı	л, мин⁻¹	U ₁ , B	нение фаз	1 ₁ , A	D _c /d _c ,	L,	δ, мм	Z ₁	ÿı	Тип обмотки	Пэ1	m ₁	a ₁	Wkl	Диаметр провода	G ₁	r ₁	Z ₂
BAO 11-2	0,8	2860	660/380	Υ/Δ	1,1/1,9	133/73	60	0,4	24	1-12; 211	Однослойная	148	1	1	148	0,49	1,35	24,5	20
			500	Υ	1,45							112			112	0,57	1,39	13,7	
			380/220	Υ/Δ	1,9/3,3							86			86	0,64	1,35	8,35	
			220/127	Υ/Δ	3,3/6,7							49			49	0,86	1,37	2,63	
BAO 12-2	1,1	2860	660/380	Υ/Δ	1,5/2,5	133/73	75	0,4	24	1-12; 2-11	Однослойная	120	1	1	120	0,55	1,48	1,68	20
			500	Υ	1,95							91			91	0,64	1,52	9,44	
			380/220	Υ/Δ	2,5/4,3							70			70	0,72	1,47	5,72	
			220/127	Υ/Δ	4,3/7,5							40			40	0,96	1,5	1,82	
BAO 11-4	0,6	1400	660/380	Υ/Δ	1,1/1,9	133/80	50	0,3	24	1-8; 2-7	Однослойная	205	1	1	205	0,44	1,21	33,5	30
			500	Υ	1,45							150			150	0,51	1,2	18,2	
			380/220	Υ/Δ	1,9/3,3							115			115	0,59	1,22	10,5	
			220/127	Υ/Δ	3,3/5,7							68			68	0,77	1,26	3,62	

Таблица 8.23. Обмоточные данные взрывозащищенных электродвигателей серии ВАО 1-го габарита

BAO 11-6

BAO 12-6

220/127

660/380

500

380/220

220/127

660/380

500

380/220

220/127

915

915

0.4

0,6

 Y/Δ

 Y/Δ

Υ

 Y/Δ

 Y/Δ

 Y/Δ

Υ

 Y/Δ

 Y/Δ

4,2/7,3 0,8/1,5 | 133/80

1,1

1,5/2,6

2,6/4,5

1,3/2,2

1,72

2,2/3,8

3,8/6,6

65

85

133/80

0.25

0,25

36

36

55

201

153

116

67

170

129

98

57

1 1

Однослойная

Однослойная

55

201

153

116

67

170

129

98

57

1

0.86

0.41

0,47

0,55

0,72

0.47

0,53

0,62

0,8

1,33

1,46

1,46

1,51

1,4

1,81

1,75

1,81

1,75

2,56

53,6

31,1

17,2

5,8

38,6

23,0

12,8

4,46

26

26

				500	Υ	1,45							150			150	0,51	1,2	18,2	
ľ				380/220	Υ/Δ	1,9/3,3							115			115	0,59	1,22	10,5	
				220/127	Υ/Δ	3,3/5,7						_	68			68	0,77	1,26	3,62	
	BAO 12-4	0,8	1400	660/380	Υ/Δ	1,4/2,4	133/80	75	0,3	24	1-8; 2-7	Однослойная	165	1	1	165	0,49	1,31	23,5	30
				500	Υ	1,8							123			123	0,57	1,32	12,1	
				380/220	Υ/Δ	2,4/4,2							96			96	0,64	1,3	8,05	

1-8; 2-7

1-8; 2-7

Тип элек-			٠,	Соеди-							Статор)							Ротор
тродвига- теля	P, KBt	п, мин ⁻¹	U ₁ , B	фаз	I ₁ , A	D _c /d _c ,	L,	δ, мм	Z ₁	y 1	Тип обмотки	Пэ1	m ₁	81	W _{K1}	Диаметр провода	G ₁	r ₁	Z ₂
BAO 21-2	1,5	2860	660/380	Υ/Δ	2,0/3,4	153/86	63	0,45	24	1-12; 2-11	Однослойная	120	1	1	120	0,64	2,13	13,1	20
			500	Υ	2,57							91			91	0,74	2,15	7,45	
			380/220	Υ/Δ	3,4/5,85							70′			70	0,83	2,08	4,55	
			220/127	Υ/Δ	5,85/10,1							40			40	1,12	2,15	1,43	
BAO 22-2	2,2	2860	660/380	Υ/Δ	2,7/4,6	153/86	90	0,45	24	1-12; 2-11	Однослойная	90	1	1	90	0,74	2,36	8,17	20
			500	Υ	3,6							68			68	0,86	2,4	4,58	
			380/220	Υ/Δ	4,6/8,0						'	52			52	1,0	2,47	2,7	
			220/127	Υ/Δ	8,0/14,0							30			30	1,3	2,41	0,89	
BAO 21-4	1,1	1420	660/380	Υ/Δ	1,7/2,9	153/94	70	0,3	24	1-8; 2-7	Однослойная	152	1	1	152	0,57	1,7	16,7	30
			500	ΥΥ	2,2							115			115	0,67	1,78	9,2	
			380/220	Υ/Δ	2,9/5,0							88			88	0,77	1,79	5,3	
			220/127	Υ/Δ	5,0/8,6							51			51	1,0	1,74	1,82	
BAO 22-4	1,5	1420	660/380	<u>Υ/Δ</u>	2,1/3,7	153/94	95	0,3	24	1-8; 2-7	Однослойная	1 23	1	1	123	0,67	2,14	11,1	30
			500	ΥΥ	2,8							94			94	0,77	2,15	6,37	
			380/220	Υ/Δ	3,7/6,4							71			71	0,9	2,22	3,53	
			220/127	Υ/Δ	6,4/11,1	•						40			40	1,2	2,23	1,12	
BAO 21 -6	8,0	930	660/380	Y/∆	1,5/2,5	153/98	70	0,25	36	1-8; 2-7	Однослойная	145	1	1	145	0,51	1,84	27,8	26
			500	Υ	1,9							110			110	0,59	1,84	15,7	
			380/220	Υ/Δ	2,5/4,3							84			84	0,67	1,8	9,34	
			220/127	Υ/Δ	4,3/7,5							49			49	0,9	1,9	3,02	
BAO 22-6	1,1	930	660/380	<u>Υ/Δ</u>	1,9/3,4	153/98	95	0,25	36	1-8; 2-7	Однослойная	110	1	1	110	0,62	2,3	16,2	26
			500	Y	2,6							83			83	0,72	2,33	9,1	
		1	380/220	Υ/Δ	3,4/5,9							63			63	0,83	2,35	5,17	-
			220/127	Υ/Δ	5,9/10,2	-						37			37	1,08	2,34	1,8	

1,12

1,12

0,74

0,86

0,96

1,3

3,0

3,06

3,14

3,2

3,04

3,2

1,98

0,628

10,8

6,1

3,75

1,17

46

35

20

105

80

61

35

35

40

105

80

61

35

Однослойная

2

1

Тип элек-				Соеди-							Статор)							Ротор
тродвига- теля	P, kBt	п, м ин ⁻¹	U ₁ , B	фаз фаз	ί ₁ , Α	D _c /d _c ,	L,	δ, мм	Z ₁	y 1	Тип обмотки	fl ₃ 1	m ₁	a 1	W _K 1	Диаметр провода	G ₁	r ₁	Z ₂
BAO 31-2	3,3	2900	660/380	Υ/Δ	3,8/6,5	180/106	88	0,55	24	1-9	Двухслойная	86	1	1	43	0,9	3,21	5,05	20
			500	Y	5,0							66			33	1,04	3,25	2,91	
			380/220	Υ/Δ	6,5/11,3							50			25	1,2	3,29	1,65	
			220/127	Υ/Δ	11,3/19,5							60	2		15	1,2	3,34	0,6	
BAO 32-2 BAO 31-4	4	2 90	660/380	Υ/Δ	4,7/8,2	180/106	115	0,55	24	1-9	Дв у хслойная	68	1	1	34	1,0	3,4	3,56	20
			500	Y	6,3							52			26	1,16	3,51	2,04	
			380/220	Υ/Δ	8,2/14,2							40			20	1,3	3,38	1,24	
			220/127	Υ/Δ	14,2/24,6							44	2		11	1,25	3,6	0,35	
	2,2	1430	660/380	Υ/Δ	3,0/5,0	180/112	88	0,35	36	1-12;	Однослойная	75	1	1	75	0,77	2,73	8,06	26
			500	Y	3,8					2-11;3-10		57			57	0,9	2,83	4,5	
			380/220	Υ/Δ	5,0/8,7							44			44	1,0	2,69	2,8	
			220/127	Υ/Δ	8,7/15,1							50	2		25	0,96	2,82	0,87	

ı				220/121	1/4	14,2/24,0			_				7.1	_	_	٠,	1,20	0,0	0,00	
Ī	BAO 31-4	2,2	1430	660/380	Υ/Δ	3,0/5,0	180/112	88	0,35	36	1-12;	Однослойная	75	1	1	75	0,77	2,73	8,06	26
				500	Y	3,8					2-11;3-10		57			57	0,9	2,83	4,5	
				380/220	Υ/Δ	5,0/8,7							44			44	1,0	2,69	2,8	
				220/127	Υ/Δ	8,7/15,1							50	2		25	0,96	2,82	0,87	
	BAO 32-4	3	1430	660/380	Υ/Δ	4,0/6,5	180/112	115	0,35	36	1-12;	Однослойная	60	1	1	60	0,86	3,02	5,78	26
Í	Ì					4.0					2-11; 3-10		45			45	1.0	2.00	0.0	

1-8; 2-7

Н				1 '	'	. , .		l	1						_					Ĺ
Ì	BAO 31-4	2,2	1430	660/380	Υ/Δ	3,0/5,0	180/112	88	0,35	36	1-12;	Однослойная	75	1	1	75	0,77	2,73	8,06	
				500	Υ	3,8					2-11;3-10		57			57	0,9	2,83	4,5	
				380/220	Υ/Δ	5,0/8,7							44			44	1,0	2,69	2,8	
				220/127	Υ/Δ	8,7/15,1							50	2		25	0,96	2,82	0,87	
	BAO 32-4	3	1430	660/380	Υ/Δ	4,0/6,5	180/112	115	0,35	36	1-12;	Однослойная	60	1	1	60	0,86	3,02	5,78	
				500	Υ	4,9					2-11; 3-10		45			45	1,0	3,06	3,2	

36

6,5/11,2

11,2/19,5

2,4/4,2

3,2

4,2/7,3

7,3/12,6

180/122

88 0<3

380/220

220/127

660/380

500

380/220

220/127

950

BAO 31-6

Υ/Δ

Υ/Δ

 Y/Δ

Υ

Υ/Δ

 Y/Δ

Тип элек-	Р,		11.	Соеди-							Статор)							Ротор
тродвига- теля	г, кВт	п, мин ⁻¹	U ₁ , B	нение фаз	I ₁ , A	Dc/dc, MM	L, MM	δ, мм	Z ₁	y 1	Тип обмотки	Пэ1	m ₁	aı	W _{K1}	Диаметр провода	G ₁	r ₁	Z ₂
BAO 32-6	2,2	950	660/380	Υ/Δ	3,4/5,9	180/1 2 2	125	0,3	36	1-8; 2-7	Однослойная	80	1	1	80	0,9	4,13	6,56	46
			500	Υ	4,5							61			61	1,04	4,21	3,76	
			380/220	Υ/Δ	5,9/10,2							46			46	1,2	4,24	2,12	
			220/127	Υ/Δ	10,2/17,6							54	2		54	1,2	4,25	0,74	
Тип элек-				Соеди-		оанные	взрь		щиш	енных элек	тродвигат Стато		epuu	BAU	4-20 8	aoapuma		***************************************	Ротор
тродвига-	Р, к Вт	п, мин ⁻¹	U ₁ , B	нение	l ₁ ,	D _c /d _c ,	L,	δ,	Zı		Статор Тип обмотки	D N ₃₁	m ₁	aı	W _r 1	Диаметр	G ₁	r ₁	Ροτο ρ Ζ ₂
RNST				фаз		мм	ММ	ММ	21	y 1	INII OOMUIKN	1131	''''(Δı	WKI	провода			-2
BAO 41-2	5,5	2900	127/220	Δ/Υ	34,3/19,8	208/123	110	0,55	24	1-10	Двухслойная	60	3	1	10	1,3	-	0,256	20
			220/380	Δ/Υ	19,8/11,5							68	2		17	1,2	~	0,75	
			380/660	Δ/Υ	11,5/6,6							58	1		29	1,3	6,24	2,17	
			500	Υ	8,7							88	2		22	1,04	-	1,285	
BAO 42-2	7,5	2900	220/380	Δ/Υ	26/15	208/123	150	0,55	24	1-10	Двухслойная	84	3	1	14	1,08	-	0,57	20
			380/660	Δ/Υ	15/8,7							96	2		24	1,0	6,9	1,7	
			500	Υ	-							72	2		18	1,08	-	0,945	
BAO 41-4	4	1 450	127/220	Δ/Υ	25/14,5	208/133	110	0,4	36	1-12;	Однослойная	40	2	1	20	1,35	-	0,465	26
			220/380	Δ/Υ	14,5/8,4					2-11; 3-10		68			34	1,0	_	1,435	
			380/660	Δ/Υ	8,4/4,9	1						59	1	1	59	1,08	5,46	4,27	
						-						45			45	1.25		2,44	1

9
$^{\circ}$
ω
œ
90
\approx
ξ'
$\stackrel{>}{\sim}$
×
3
0
ç
Ī
5
Ø
Ο.
3
₹
<u> </u>
5
È
Θ
⋥
Ō
4
3
σ
Ξ
₹
YU.
\mathcal{L}
5
бмоточные данные электрических машин
<u> </u>
Š
m
5
Ē
Ī
-

	٠	-
	(1
	٠	4
	C	3
	•	
	Ċ	3
	٠	
	į,	_
	(_
	١	•
	(_
	-	:
	3	5
	7	2
	2	•
	3	3
		ä
	4	C
	٠	ī
	:	Į
	ſ	7
	÷	5
	C	1
	1	۰
	,	-
	2	1
	:	,
	٠	1
	1	1
	ř	;
		j
		3
	ς	ı
	i	Ξ
	٠	-
	C	1
	:	^
	÷	
•	7	-

	_
	a
	•
	_
	\boldsymbol{c}
	_
	$\overline{}$
	\simeq
	₹
	=
	C
	=
	~
	~
	c
	ממחדמים מחדרים
	Æ
	÷
	4
	m
	×
	•
	١L
	_
	c
	\sim
	u
	~
	ч.
	I
	-
	v
	=
	Œ
	G
	Ξ
	2
	ã
	in a
	こんのス
	SIGKI
	~
	Ξ
	Ξ
	Ξ
	Ξ
	Ξ
	Ξ
	Ξ
	Ξ
	Ξ
	Ξ
	Ξ
	Ξ
•	だっていっていていること
•	だっていっていていること
•	だっていっていていること
•	だっていっていていること
•	だっていっていていること
•	だっていっていていること
•	だっていっていていること
•	だっていっていていること
•	だっていっていていること
•	だっていっていていること
•	だっていっていていること
•	Ξ
•	だっていっていていること
•	だっていっていていること
•	だっていっていていること
•	だっていっていていること
•	だっていっていていること
•	だっていっていていること
•	だっていっていていること
•	だっていっていていること
•	だっていっていていること
•	だっていっていていること
•	だっていっていていること
•	だっていっていていること
•	だっていっていていること
•	だっていっていていること
•	だっていっていていること
•	だっていっていていること

Тип элек-	_			Соеди-	,						Стато	p							Ротор
тродвига- теля	P, ĸBt	п, мин ⁻¹	U ₁ , B	фаз фаз	ι _ι , Α	D _c /d _c ,	L,	δ, мм	Z ₁	y ₁	Тип обмотки	Пэ1	m ₁	a ₁	W _K 1	Диаметр провода	G ₁	r ₁	Z ₂
B A O 42-4	5,5	1450	127/220	ΔΛ	34/19,5	208/133	150	0,4	36	1 –12;	Однослойная	42	3	1	14	1,3	_	0,264	2 6
			220/380	ΔΛ	19,5/11,3					2-11; 3-10		50	2		25	1,2		0,828	
			380/660	ΔΛ	11,3/6,5						·	43	1	'	43	1,3	6,45	2,42	
			500	Υ	8,6							64	2		32	1,04	_	1,41	
BAO 41-6	3	960	127/220	ΔΛ	22/13	208/144	110	0,4	36	1-8; 2-7	Однослойная	50	2	1	25	1,25	_	0,58	46
			220/380	ΔΛ	13/7,4							43	1		43	1,35	-	1,71	
			380/660	ΔΛ	7,4/4,3						'	75			75	1,0	5,1	5,37	
			500	Υ	5,6						'	57			57	1,16	-	3,06	
BAO 42-6	4	960	127/220	Δ/Υ	29,3/17	208/144	150	0,4	36	1-8; 2-7	Однослойная	54	3	1	18	1,2	-	0,348	46
			220/380	ΔΛ	17/9,8							62	2		31	1,08	-	1,11	
			380/660	ΔΛ	9,8/5,6							54	1		54	1,2	6,06	3,12	
			500	Υ	7,4							41			41	1,35	_	1,87	
B AO 41-8	2,2	720	127/220	ΔΛ	18,9/10,9	208/144	110	0,4	36	1-5	Двухслойная	64	2	1	16	1,04	_	0,93	46
			220/380	ΔΛ	10,9/6,3							108	2		27	0,8	_	2,65	
			380/660	ΔΛ	6,3/3.6							94	1		47	0,86	4,11	7,97	
			500	Υ	5,0							144	2		36	0,69		4,72	
B AO 42-8	3	720	127/220	ΔΛ	25,1/14,5	208/144	150	0,4	36	1-5	Двухслойная	48	2	1	12	1,2		0,618	46
			220/380	ΔΛ	14,5/8,4							40	1		20	1,3	_	1,745	
			380/660	ΔΛ	8,4/4,8							70			35	1,0	4,86	5,16	

500

6,4

54

26

1,16

2,84

Таблица 8.27. Обмоточные данные взрывозащищенных электродвигателей серии ВАО 5-го габарита

Тип элек-	, n			Соеди-								татор							Ротор
тродвига- теля	Р, кВт	п, мин ⁻¹	U ₁ , B	нение фаз	l ₁ , A	D _c /d _c ,	L,	δ, мм	Zı	y ₁	Тип обмотки	nəş	m ₁	a ₁	W _K 1	Диаметр провода	G ₁	r ₁	Z ₂
BAO 51-2	10	2940	220/380	Δ/Υ	25/30	243/140	135	0,7	24	1-10	Двухслойная	72	3	1	12	1,45	-	0,284	20
			380/660	Δ/Υ	20/11,5							82	2		21	1,35	11,76	0,836	
			500	Y	15,5						'	96	3		16	1,25	_	0,527	
BAO 52-2	13	2940	220/380	Δ/Υ	45/26	243/140	170	0,7	24	1-10	Двухслойная	80	4	1	10	1,4	-	0,209	20
			380/660	Δ/Υ	26,15							68	2		17	1,5	11,8	0,62	
			500	Y	20							78	3		13	1,4	-	0,361	
BAO 51-4	7,5	1460	220/380	Δ/Υ	26,5/15,3	243/158	135	0,6	36	1-8	Двухслойная	52	2	1	13	1,35	-	0,61	46
			380/660	ΔΛ	15,3/8,8					-		44	1		22	1,5	8,1	1,66	
			500	Y	11,6							68	2		17	1,16	-	1,08	
BAO 52-4	10	1460	220/380	ΔΛ	35/20	243/158	170	0,6	36	1-8	Двухслойная	60	3	1	10	1,25	-	0,405	46
			380/660	ΔΛ	20/11,5							68	2		17	1,16	8,7	1,12	
			500	Y	15,3							52			13	1,35	-	0,675	
BAO 51-6	5,5	970	127/220	Δ/Υ	38/22	243/173	135	0,5	36	1-6	Двухслойная	36	2	1	9	1,5	_	0,318	46
			220/380	Δ/Υ	22/13	•						62			16 и 15	1,16	6,18	0,885	
			380/660	Δ/Υ	13/7,4							52	1		26	1,25	-	2,61	
			500	Y	9,7							40			20	1,4	_	1,6	
BAO 52-6	7,5	970	220/380	ΔΛ	29,4/17,0	243/173	190	0,5	36	1-6	Двухслойная	44	2	1	11	1,35	_	0,566	46
			380/660	ΔΛ	17,0/9,8					-		38	1		19	1,5	7,68	1,58	
			500	Y	13							56	2		14	1,2	-	0,915	

тродвига- теля	, кВт	п, мин ⁻¹	B	нение фаз	l ₁ , A	D _c /d _c ,	M.		· 41	y i	Тип обмотки	Π ₃₁	m ₁	a ₁	W _K 1	Диаметр провода	G ₁	r ₁	Z ₂
BAO 51-8	4	730	127/220	ΔΛ	33/19	243/173	3 13	5 0,	5 36	1–5	Двухслойная	40	2	1	10	1,45	-	0,349	46
			220/380	ΔΛ	19/11							36	1		18	1,5	_	1,17	
			380/660	ΔΛ	11/6,4							62			31	1,16	5,91	3,36	
			500	Υ	8,4		-					46			23	1,35	_	1,84	
BAO 52-8	5,5	730	127/220	ΔΛ	44/25,5	243/173	3 19	0,	5 36	1-5	Двухслойная	42	3	1	7	1,4	_	0,211	46
			220/380	Δ/Υ	25,5/15							52	2		13	1,25	_	0,735	
			380/660	Δ/Υ	15/8,5							44	1		22	1,4	7,32	1,95	
				.,	1							68	2		17	1,08	_	1.07	
		Таб	500 блица 8.2	Y 28. Обм	11,2	е данные	э взр	ыво	защи	ценных	с электродвиг			ерии				1,27	
Тип элек-		Tat	блица 8.2 ————————————————————————————————————	28. Обм	.	е данные	е взр	ыво	защи	ценных				ерии				1,21	Рото
Тип элек- тродвига- теля	Р, кВт	Таб п, мин ⁻¹		<u>.</u>	.	D _c /d _c ,	е взр L,	δ,	защи Z ₁	це нны х У1		гател						r ₁	Ротор Z 2
тродвига-		п,	блица 8.2 U ₁ ,	28. Обм Соеди- нение	оточные 	D _c /d _c ,		δ,	Z ₁		C	гател татор	тей с		ВАО 6-г	о габарит)a		
тродвига- теля	кВт	п, мин ⁻¹	блица 8.2 U ₁ , В	28. Обм Соеди- нение фаз	<i>оточные</i> I ₁ , A	D _c /d _c ,	L,	δ,	Z ₁	y 1	С Тип обмотки	г ател татор п _{э1}	neŭ c		BAO 6-2	о габарит Диаметр провода	G ₁	r ₁	Z ₂
тродвига- теля ВАО 62-2	кВт 17	п, мин ⁻¹ 2940	блица 8.2 U ₁ , B 380/660	28. Обм Соеди- нение фаз Δ/Y	I ₁ , A 32,5/18,7 26/15	D _c /d _c , MM 291/153 291/180	L, MM 165	δ, мм	Z ₁ 36	y ₁ 1–12	С: Тип обмотки Двухслойная	гатор п _{э1}	m ₁		# BAO 6-2	о габарит Диаметр провода	G ₁ 10,2	r ₁	Z ₂
тродвига- теля ВАО 62-2 ВАО 61-4	кВт 17 13	п, мин ⁻¹ 2940 1460	Олица 8.2 U ₁ , B 380/660 380/660	28. Обм Соеди- нение фаз Δ/Υ	I ₁ , A 32,5/18,7 26/15	D _c /d _c , MM 291/153 291/180	L, MM 165	δ, мм 0,85	Z ₁ 36 36 36	y ₁ 1-12 1-8	С- Тип обмотки Двухслойная Двухслойная	гатор п _{э1} 44	m ₁ 2 2		BAO 6-2	О габарит Диаметр провода 1,4 1,25	G ₁ 10,2 9,2	r ₁ 0,66 0,91	Z ₂ 28 46
тродвига- теля ВАО 62-2 ВАО 61-4 ВАО 62-4	кВт 17 13	п, мин ⁻¹ 2940 1460	Олица 8.2 U ₁ , B 380/660 380/660	28. Обм Соеди- нение фаз $\Delta \gamma$ $\Delta \gamma$	I ₁ , A 32,5/18,7 26/15 33,5/19,5	Dc/dc, MM 291/153 291/180 291/180 291/180	L, MM 165 150 210	δ, мм 0,85 0,5	Z ₁ 36 36 36 54	y ₁ 1-12 1-8 1-8	Стип обмотки Двухслойная Двухслойная Двухслойная	гатор п _{э1} 44 60 48	m ₁ 2 2		BAO 6-2 31 Wk1 1 11 1 15 1 12	О габарит Диаметр провода 1,4 1,25	G ₁ 10,2 9,2 10,7	r ₁ 0,66 0,91 0,68	28 46 46

Тип элек-

BAO 62-8

730

10

380/660

Δ/Υ

23,5/13,5 291/206

210 0,45

54

1-7

Двухслойная

24

12

1

1,62

9,6

1,38

64

Соеди-

Uı,

П,

Таблица 8.29. Обмоточные данные взрывозащищенных электродвигателей серии ВАО 7-го габарита

Тип элек-	D			Соеди-								Статор							Ротор
тродвига- теля	Р, кВт	п, мин ⁻¹	U ₁ , B	фаз	I ₁ , A	D _c /d _c ,	L, мм	δ, мм	Z ₁	y 1	Тип обмотки	Пэ1	m ₁	a ₁	W _K 1	Диаметр провода	Gı	٢1	Z ₂
BAO 71-2	22	2940	380/660	Δ/Υ	41,5/24	343/183	145	1,0	36	1-12	Двухслойная	40	2	1	10	1,68	-	0,432	28
BAO 72-2	30	2940	380/660	Δ/Υ	56/32,6	343/183	190	1,0	36	1-12	Двухслойная	48	3	1	8	1,5		0,317	28
BAO 71-4	22	1460	380/660	Δ/Υ	42/25	343/214	190	0,7	36	1-8	Двухслойная	40	2	1	10	1,68	_	0,41	46
BAO 72-4	30	1460	380/660	Δ/Υ	58/33,5	343/214	250	0,7	36	1-8	Двухслойная	48	3	1	8	1,56	-	0,28	46
BAO 71-6	17	980	380/660	Δ/Υ	35,5/20,5	343/245	190	0,55	54	1-8	Двухслойная	36	2 .	1	9	1,45	-	0,672	64
BAO 72-6	22	980	380/660	Δ/Υ	43,5/25	343/245	250	0,55	54	1-8	Двухслойная	30	1	2	15	1,62		0,518	64
BAO 71-8	13	735	380/660	Δ/Υ	30/17,7	343/245	190	0,55	54	1 –7	Двухслойная	44	2	1	11	1,3	_	0,99	64
BAO 72-8	17	735	380/660	Δ/Υ	38/22	343/245	250	0,55	54	1-7	Двухслойная	34	1	2	17	1,5	-	0,665	64

Таблица 8.30. Обмоточные данные взрывозащищенных электродвигателей серии ВАО 8-го габарита

Тип элек-			l	Соеди-							(Статор							Ротор
тродвига- теля	P, ĸBt	п, мин ⁻¹	U ₁ , B	нение фаз	A A	D _c /d _c ,	L, mm	δ, мм	Z ₁	y 1	Тип обмотки	n ₉₁	m ₁	a ₁	W _{K1}	Диаметр провода	G ₁	r ₁	Z ₂
BAO 81-2	40	2950	380/660	Δ/Υ	77,5/45	393/211	200	1,1	36	1-12	Двухслойная	52	2	2	13	1,68	-	0,17	28
BAO 82-2	55	2950	380/660	Δ/Υ	107,5/62	393/211	250	1,1	36	1-12	Двухслойная	40	2	2	10	1,56	-	0,111	28
BAO 81-4	40	1470	380/660	Δ/Υ	77/44,5	393/247	210	0,9	48	1-11	Двухслойная	44	2	2	11	1,68		0,174	58
BAO 82-4	55	1470	380/660	Δ/Υ	105/61	393/247	280	0,9	48	1-11	Двухслойная	51	3	2	8 и 9	1,56	-	0,118	58
BAO 81-6	30	980	380/660	Δ/Υ	59,5/35	393/285	210	0,8	72	1-11	Двухслойная	33	3	1	5 и 6	1,56		0,364	82
BAO 82-6	40	980,	380/660	Δ/Υ	78,5/45,5	393/285	280	0,8	72	1-11	Двухслойная	34	2	2	8 и 9	1,56		0,244	82
BAO 81-8	22	735	380/660	Δ/Υ	45/28	393/285	210	0,8	72	1-8	Двухслойная	42	3	1	7	1,4	_	0,51	82
BAO 82-8	30	735	380/660	Δ/Υ	65/38	393/285	280	8,0	72	1-8	Двухслойная	42	2	2	10 и 11	1,4		0,34	28

Таблица 8.31. Обмоточные данные взрыеозащищенных электродвигателей серии ВАО 9-го габарита

Тип элек-	_			Соеди-							,	Статор							Ротор
тродвига- теля	Р, кВт	п, мин ⁻¹	U ₁ , B	нение фаз	I ₁ , A	D _c /d _c ,	L,	δ, мм	Z ₁	y 1	Тип обмотки	N ₃ 1	m ₁	aı	W _K 1	Диаметр провода	G ₁	r ₁	Z ₂
BAO 91-2	75	2960	380/660	Δ/Υ	145/83,5	458/247	220	1,5	36	1-12	Двухслойная	10	1	1	5	3,05× 6,4	_	0,0738	28
BAO 92-2	100	2960	380/660	Δ/Υ	190/110	458/247	275	1,5	36	1-12	Двухслойная	8	1	1	4	3,8× 6,4	_	0,0507	38
BAO 91-4	75	1470	380/660	Δ/Υ	164/84	458/290	240	0,9	48	1-11	Двухслойная	9	1	1	4 и 5	3,28× 6,4	_	0,077	38
BAO 92-4	100	1470	380/660	Δ/Υ	195/113	458/290	330	0,9	48	1-11	Двухслойная	13	1	2	6и7	2,1×6,4	_	0,0505	58
BAO 91-6	55	980	380/660	Δ/Υ	109/63	458/334	240	0,7	72	1-11	Двухслойная	8	1	1	4	2,83× 5,5	-	0,13	58
BAO 92-6	75	980	380/660	Δ/Υ	148/85,5	458/334	330	0,7	72	1-11	Дв у хслойная	6	1	1	3	3,8× 5,5	_	0,084	58
BAO 91-8	40	735	380/660	Δ/Υ	88/51	458/334	240	0,7	72	1-8	Двухслойная	10	1 .	1	5	2,1×5,9	_	0,197	58
BAO 92-8	55	735	380/660	Δ/Υ	116/67	458/334	330	0,7	72	1-8	Двухслойная	8	1	1	4	2,83× 5,5	_	0,135	

Примечание. Обмотки статоров электродвигателей 0—5-го габаритов выполнены проводом марки ПЭТВ с изоляцией паза класса В, 6—9-го габаритов — проводом марки ПСДК с изоляцией паза класса Н.

8.6. Обмоточные данные взрывозащищенных электродвигателей серии ВАО с высотой оси вращения 315, 355 и 450 мм

Таблица 8.32. Обмоточные данные взрывозащищенных электродвигателей ВАО 315

Тип электро-	P,	n,	U ₁ ,	Соеди-	l ₁ ,						Ста	тор	_					Ротор
двигателя	кВт	мин ⁻¹	В	нение фаз	A	Dc/dc, мм	L, MM	δ, мм	Zı	y 1	N ₃₁	m ₁	aı	MΦ	ахь, мм	G ₁	r ₁	Z ₂
BAO 315 S-2	132	2963	380/660	Δ/Υ	241/139	520/290	270	1,8	48	1-14	12	1	2	48	3,05×6,9	10,0	0,03	4 0
BAO 315 M-2	160	2963	380/660	Δ/Υ	288/166	520/290	335	1,8	48	1-14	10	1	2	40	3,8×6,9	10,5	0,0217	40
BAO 315 S-4	132	1482	380/660	Δ/Υ	212/140	520/340	300	1,2	60	1-13	10	1	2	50	2,83×5,9	10,8	0,0368	50

115,4 0,0224

Ротор

Тип электро-	P,	n,	U1.	Соеди-	l ₁ ,	_	_				Ста	тор					•	Ротор
двигателя	кВт	ми н ⁻¹	В	фаз фаз	A	D _c /d _c , мм	L, мм	δ, мм	Z1	y 1	Пэ1	m ı	a ₁	w _{\$\Phi\$}	ах b, мм	G ₁	Γ1	Z ₂
BAO 315 M-4	160	1483	380/660	Δ/Υ	291/161	520/340	375	1,2	60	1-13	8	1	2	40	3,53×5,9	17,6	0,026	50
BAO 315 S-6	110	987	380/660	Δ/Υ	206/119	520/360	300	0,8	72	1-11	10	1	2	66	2,83×5,9	13,6	0,0445	58
BAO 315 M-6	132	987	380/660	Δ/Υ	244/141	520/360	375	0,8	7 2	1-11	4+5	1	2	54	3,53×5,9	14,5	0,0326	58
BAO 315 S-8	75	738	380/660	Δ/Υ	149/85	520/370	260	0,7	72	1-8	16	1	2	.96	1,95×5,9	51,8	0,0757	58
BAO 315 S-8	90	737	380/660	Δ/Υ	177/102	520/370	300	0,7	72	1-8	14	1	2	84	2,25×5,9	66	0,054	58
BAO 315 M-8	110	738	380/660	Δ/Υ	217/125	520/370	375	0,7	72	1-8	5+6	1	2	66	3,05×5,9	80,5	0,0417	58
BAO 315 S-10	55	591	380/660	Δ/Υ	128/74	520/370	300	0,7	72	1-7	16	1	2	96	1,95×5,9	60	0,0707	58
BAO 315 M-10	75	590	380/660	Δ/Υ	168/97	520/370	370	0,7	72	1-7	6+7	1	2	78	2,44×5,9	73	0,066	58
		T	afininia 8	33 OF	моточнь	іе даннгіе	RSDNIG	รดรลแม	шен	ILIY 30G	vmno	วิดแรล	me ne	ϊ ΒΔΟ	355			
T		<u></u>		3.33. <i>Об</i> Соеди-		іе данные	взрые	зозащі	и цени	ных эле	ктро Ста		теле	ŭ BAO	355			Ротор
Тип электро- двигателя	Р, кВт	п, мин ⁻¹	аблица 8 U ₁ , В		моточнь I ₁ , A	De/de	взрые L, мм	з озащ і δ, мм	гщен г Z ₁	у ₁			теле	й ВАО 	355 ах b, мм	G ₁	r ₁	Ротор Z ₂
двигателя		п,	U ₁ ,	Соеди- нение	l ₁ ,	D _c /d _c ,					Ста	тор					r ₁	•
двигателя ВАО 355 M-2	кВт	п, мин ⁻¹	U ₁ , B	Соеди- нение фаз	l ₁ , A	D _c /d _c ,	L, мм	δ, мм	Z ₁	y 1	Ста	тор т ₁	aı	w _Ф	ахь, мм		,	Z ₂
двигателя ВАО 355 M-2 ВАО 355 L-2	кВт 200	п, мин ⁻¹ 2970	U ₁ , B	Соеди- нение фаз	I ₁ , A	D _c /d _c , мм 590/320	L, мм 335	δ, мм 2,0	Z ₁	yı 1–15	Ста п _{э1}	тор m ₁	a ₁	w _⊕ 32	ах b, мм 2,63×6,9	106,5	0,0135	Z ₂
двигателя BAO 355 M-2 BAO 355 L-2 BAO 355 M-4	кВт 200 250	п, мин ⁻¹ 2970 2970	U ₁ , B 380/660 660	Соеди- нение фаз 	I ₁ , A 364/210 260	D _c /d _c , MM 590/320 590/320	L, мм 335 415	δ, мм 2,0 2,0	Z ₁ 48 48	y ₁ 1-15 1-15	Ста П _{э1} 16	тор m ₁ 2	a ₁ 2 2	w _⊕ 32 48	ах b, мм 2,63×6,9 1,68×6,9	106,5	0,0135	Z ₂ 40 40
двигателя BAO 355 M-2 BAO 355 L-2 BAO 355 M-4 BAO 355 L-4	200 250 200	п, мин-1 2970 2970 1485	U ₁ , B 380/660 660 380/660	Соеди- нение фаз 	364/210 260 365/211	D _c /d _c , MM 590/320 590/320 590/380	L, мм 335 415 350	δ, мм 2,0 2,0 1,6	Z ₁ 48 48 60	y ₁ 1-15 1-15 1-13	Ста п _{э1} 16 24 8+8	тор тор 2 2 1	a ₁ 2 2 4	w 32 48 40	ах b, мм 2,63×6,9 1,68×6,9 2,44×6,9	106,5 109 112,5	0,0135 0,0322 0,0168	Z ₂ 40 40 50
	200 250 200 250	п, мин ⁻¹ 2970 2970 1485 1484	U ₁ , B 380/660 660 380/660	Соеди- нение фаз	I ₁ , A 364/210 260 365/211 260	D _c /d _c , MM 590/320 590/320 590/380 590/380	335 415 350 430	δ, мм 2,0 2,0 1,6 1,6	Z ₁ 48 48 60 60	y ₁ 1-15 1-15 1-13 1-13	Ста п _{э1} 16 24 8+8 7+7	тор тор 2 2 1	a ₁ 2 2 4 4	w φ 32 48 40 35	а x b, мм 2,63×6,9 1,68×6,9 2,44×6,9 2,83×6,9	106,5 109 112,5 122,4	0,0135 0,0322 0,0168 0,0135	Z ₂ 40 40 50 50

1-8

4+5

2

54

4,1×6,9

Статор

Соеди-

BAO 355 L-8

160

741

380/660

Δ/Υ

303/175

590/430

430

0,8

72

Poton

Zο

58

58

58

G₁

83.5

98.8

r₁

0.05

0.037

110.0 0.0302

ах b. мм

 2.44×6.9

3.05×6.9

3.55×6.9

Статор Ротор Тип электро-P, Соединеn, U₁. B I1, A мин-1 Dc/dc. кВт ние фаз лвигателя δ. мм Zι G₁ Z_2 L, MM **V**1 ах b. мм Na₁ m_1 aı Wф ۲₁ BAO 450 S-2 320 2975 2,9 48 1-15 2 2.25× 6.9 133,8 0.0233 660 327 660/360 450 20 2 40 40 Δ BAO 450 S-4 320 1486 660 335 660/430 470 1.8 1-13 18 45 2.25× 6.9 139.3 0.0243 50 60 1 4 Δ BAO 450 S-6 250 90 660 260 660/460 470 1.3 72 1 - 1110 2 55 3.8×6.9 158 0.038 58 Λ BAO 450 M-6 320 990 660 330 660/460 590 1.3 72 1-11 6+7 1 3 52 3.05×6.9 171 0.0285 58 Δ BAO 450 S-8 200 743 380/660 Δ / Y 374/216 660/480 72 1-8 7+8 2.44× 6.9 123.1 0,0184 470 1,0 1 4 45 58 BAO450 M-8 250 743 269 660/480 72 1-8 12 3.05×6.9 144.0 0.0135 660 590 1,0 4 36 Λ 1 58 BAO 450 S-10 160 593 380/660 340/196 660/480 1,0 72 1-7 16 2 48 2.26×6.9 117,1 0.0204 ΔN 470 2 58 BAO 450 M-10 200 593 380/660 ΔN 402/232 660/480 590 1.0 72 1-7 6+8 2 42 139,8 0.0177 58 2 2.63×6.9 Примечания. 1. Обмотка статора двухслойная, выполнена проводом марки ПСД. 2. Односторонняя толщина пазовой изоляции для электродвигателей с высотой оси вращения 315 и 355 мм — 0,9 мм, а для электро-

δ. мм

8.0

8.0

8.0

Таблица 8.34. Обмоточные данные езрывозащищенных электродеигателей ВАО 450

I MM

300

350

430

Zι

72

72

72

V1

1-7

1-7

1-7

Статор

 m_1

Па1

14

12

10

aı

2

2

2

Wф

84

72

60

P,

кВт

90

110

132

n.

мин. 1

593

593

593

Тип электро-

двигателя

BAO 355 M-10

BAO 355 M-10

BAO 355 L-10

Соеди-

нение

фаз

 ΔN

 ΔN

 ΔM

l₁,

Α

190/110

230/133

272/157

Dc/dc.

ММ

590/430

590/430

590/430

U₁,

380/660

380/660

380/660

двигателей с высотой оси вращения 455 мм — 1 мм.

^{3.} При двойных проводниках в пазу витковая изоляция между ними не ставится.

8.7. Обмоточные данные многоскоростных электродвигателей

8.7.1. Обмоточные данные многоскоростных электродвигателей серии AO2 1—9-го габаритов на напряжение 380 В

Таблица 8.35. Обмоточные данные многоскоростных электродвигателей АО2 1 и 2-го габаритов

				ì								C-0								Ротор
Тип электро- двигателя	2р	Р, кВт	п, I мин ⁻¹	I ₁ ,	Соедине-	D _c /d _c ,	L,	δ,	Z1		Тип обмотки	Ста- п _{к1}	W _K 1	m ₁		W ₀	Диаметр про-	G ₁ ,	f ₁ ,	Z 2
A						ММ	ММ	ММ			THIS DOMOLKI	IIKI	AAK1	1111	a ₁	νν φ	вода, мм	КΓ	Ом	22
АОЛ2-11-4/2	4/2	0,45	1410	1,4	Δ/ΥΥ	133/80	54	0,3	24	1-8	Двухслойная	4	143	1	1	1144	0,35	1,2	81,0	22
		0,6	2730	1,5	1										2	572			20,2	
АОЛ2-12-4/2	4/2	0,6	1410	1,7	Δ/ΥΥ	133/80	67	0,3	24	1-8	Двухслойная	4	110	1	1	880	0,41	1,34	50,4	22
		0,85	2750	2,1					_						2	440			12,6	
АОЛ2-21-4/2	4/2	0,7	1420	3	Δ/ΥΥ	1 53/94	70	0,3	24	1-8	Двухслойная	4	100	1	1	800	0,49	1,79	33,2	22
		0,9	27 7 0	3											2	400			8,3	
АОЛ2-22-4/2	4/2	1	1420	3,6	Δ/ΥΥ	153/94	97	0,3	24	1-8	Двухслойная	4	79	1	1	632	0,57	2,15	21,7	22
		1,4	2770	3,2											2	316			3,4	
AO2-11-4/2	4/2 ·	0,45	1410	1,4	Δ/ΥΥ .	133/80	52	0,25	24	1 –8	Двухслойная	4	125	1	.1	1000	0,38	1,16	57,4	22
		0,85	2750	1,5												500			14,3	
AO2-12-4/2	4/2	0,6	1420	1,7	Δ/ΥΥ	133/80	65	0,25	24	1 –8	Двухслойная	4	110	1	1	880	0,41	1,26	46,3	22
		0,85	2770	2,1											2	440			11,6	
AO2-21-4/2	4/2	1,0	1420	3,0	Δ/ΥΥ	153/94	70	0,25	24	1-8	Двухслойная	4	88	1	1	704	0,53	1,87	25,1	22
		1,3	2770	3,0											2	352			6,27	
AO2-22-4/2	4/2	1,4	1420	3,6	Δ/ΥΥ	153/94	95	0,25	24	1-8	Двухслойная	4	67	1	1	536	0,62	2,18	15,5	22
		1,9	2770	3,2											2	268			3,87	

Примечание. Обмотку статора выполняют проводом марки ПЭТВ.

T.,		_			Соеди-						Стат	ор								Ротор
Тип электро- двигателя	2р	Р, кВт	п, м ин ⁻¹	I ₁ , A	нение фаз	D _c /d _c ,	L, MM	δ, мм	21	у1	Тип обмотки	Пк1	W _K 1	m t	a ₁	w φ	Диаметр провода, мм	G 1, кг	ί1, О м	Z ₂
АОЛ2-31-4/2	4/2	1,8	1450	4,53	Δ/ΥΥ	180/112	90	0,35	36	1-11	Двухслойная	6	46	1	1	552	0,72	3,1	12,3	26
		2,3	2850	5,3						·					2	276			3,08	
АОЛ2-32-4/2	4/2	2,3	1450	5,4	Δ/ΥΥ	180/112	117	0,35	36	1-11	Двухслойная	6	35	1	1	420	0,83	3,5	7,8	26
		2,9	2850	6,2											2	210			1,95	
АОЛ2-31-6/4	6/4	0,9	950	2,7	Υ	180/112	90	0,35	36	1-8; 2-7	Однослойная	2	67	1	1	402	0,64	1,45	9,15	26
P = const			1440	2,2	Y					1-12; 2-11; 3-10		3	55	1	1	330	0,62	1,31	9,35	

6

2

6 39

56

52

Двухслойная

Однослойная

Двухслойная

0,47

0,67

0,55

1,62

1.41

1,72

35,3

8,83

7,35

19,8

4,95

26

672

336

312

468

234

2

АОЛ2-32-6/4	6/4	1,2	950	3,4	Υ	180/112	1 17	0,35	36	1-8; 2-7	Однослойная	2	52	1	1	312	0,72	1,61	6,35	26
P = const			1440	2,9	Υ					1-12; 2-11; 3-10		3	45	1	1	270	0,69	1,47	6,9	
АОЛ2-31-6/4	6/4	0,75	940	2,5	Υ	180/112	90	0,35	36	1 -8; 2-7	Однослойная	2	67	1	1	402	0,59	1,24	10,8	26
M = const		1,1	1440	2,7	Υ					1-12; 2-11; . 3-10	·	3	52	1	1	312	0,69	1,52	7,1	
АОЛ2-32-6/4	6/4	1,1	940	3,2	Υ	180/112	117	0,35	36	1-8; 2-7	Однослойная	2	52	1	1	312	0,69	1,49	6,9	26
M = const		1,6	1440	3,8	Υ					1-12; 2-11; 3-10		3	41	1	1	246	0,77	1,67	5,0	
АОЛ2-31-6/4/2	6	0,75	940	2,4	Y	180/112	90	0,33	36	1-8; 2-7	Однослойная	2	74	1	1	444	0,53	1,1	14,7	26

1-11

1-8; 2-7

1-11

36

1440

2800

940

1440

2800

2,5

2,93

3,27

3,3

3,29

∆/YY

Υ

 Δ /YY

180/112 117 0,35

4/2 0,9

4/2 1,3

АОЛ2-32-6/4/2

1,2

1,1

1,7

Тип электро- двигателя	2 p	Р, кВт	п, мин ⁻¹	I ₁ , A	нение фаз	D _c /d _c ,	L,	δ, мм	Z1	у1	Тип обмотки	Пк1	W _{K1}	m ₁	a ₁	Wφ	Диаметр провода, мм	G ₁ ,	r ₁ ,	z ₂
AO2-31-4/2	4/2	1,8	1450	4,53	Δ/ΥΥ	180/112	88	0,3	36	1-11	Двухслойная	6	43	1	1	-516	0,74	2,99	10,5	26
		2,3	2850	5,3											2	258			2,63	
AO2-32-4/2	4/2	2,3	1450	5,4	Δ/ΥΥ	180/112	115	0,3	36	1-11	Двухслойная	6	35	1	1	420	0,83	3,39	7,55	26
		2,9	2850	6,2											2	210			1,88	
AO2-31-6/4	6/4	0,9	950	2,7	Υ	180/112	88	0,3	36	1-8;2-7	Однослойная	2	67	1	1	402	0,64	1,46	9,15	26
P = const			1440	2,2	Y					1-12; 2-11; 3-10		3	55	1	1	330	0,62	1,28	9,12	
AO2-32-6/4	6/4	1,2	950	3,4	Υ	180/112	115	0,3	36	1-8; 2-7	Однослойная	2	52	1	1	312	0,72	1,61	6,35	26
P = const			1440	2,9	- Y					1-12; 2-11; 3-10		3	45	1	1	270	0,69	1,45	6,73	
AO2-31-6/4	6/4	0,75	950	2,5	Υ	180/112	88	0,3	36	1-8; 2-7	Однослойная	2	67	1	1	402	0,59	1,24	10,8	26
M = const		1,1	1 440	2,7	Y					1-12; 2-11; 3-10		3	52	1	1	312	0,69	1,50	6,95	
AO2-32-6/4	6/4	1,1	950	3,2	Y	180/112	115	0,3	36	1-8; 2-7	Однослойная	2	52	1	1	312	0,69	1,49	6,9	26
M = const		1,6	1440	3,8	Y					1-12; 2-11; 3-10		3	41	1	1	246	0,77	1,64	4,92	
AO2-31-6/4/2	6	0,75	940	2,4	Υ	180/112	88	0,3	36	1-8; 2-7	Однослойная	2	68	1	1	408	0,57	1,18	11,75	26
	4/2	0,9	1440	2,5	Δ/ΥΥ					1-11	Двухслойная	6	50	1	1	600	0,49	1,52	27,9	
		1,2	2800	2,93											2	300			6,97	
AO2-32-6/4/2	6	1,1	940	3,27	Y	180/112	115	0,3	36	1-8; 2-7	Однослойная	2	52	1	1	312	0,67	1,41	7,35	26
	4/2	1,3	1440	3,3	Δ/ΥΥ					1-11	Двухслойная	6	39	1	1	468	0,55	1,56	19,2	
		1,7	2800	3,39		1									2	234			4,8	

Соеди-

Тип электро-

Таблица 8.37. Обмоточные данные многоскоростных электродви <mark>г</mark> ателей АО <mark>2 4-г</mark>	э габарита

-		_			Соеди-						Ста	тор								Ротор
Тип электро- двигателя	2р	Р, кВт	п, мин ⁻¹	l ₁ , A	нени е фаз	D _c /d _c ,	L,	δ, мм	Z ₁	y 1	Тип обмотки	n _{k1}	W _{K1}	m ₁	a ₁	wφ	Диаметр провода, мм	G ₁ , ĸr	ſ ₁ , Ом	Z 2
AO2-41-4/2	4/2	3,3	1460	7,26	Δ/ΥΥ	208/133	110	0,35	36	1-11	Двухслойная	6	33	1	1	396	1,04	5,58	4,96	26
		4,1	2860	8,6											2	198			1,24	
AO2-42-4/2	4/2	4,7	1450	9,77	Δ/ΥΥ	208/133	148	0,35	36	1-11	Двухслойная	6	25	1	1	300	1,20	6,35	3,17	26
		5,5	2880	11,3											2	150			0,793	
NO2-41-6/4	6/4	1,8	950	4,7	Y	208/133	110	0,35	36	1-8; 2-7	Однослойная	2	47	1	1	282	0,96	2,86	3,28	26
P = const			1450	4,2	Y					1-12; 2-11; 3-10		3	41	1	1	246	0,83	2,06	4,49	
AO2-42-6/4	6/4	2,4	950	6,2	Y	208/133	148	0,35	36	1-8; 2-7	Однослойная	2	35	1	1	210	1,12	3,15	2,07	26
P = const			1450	5,47	Y					1-12; 2-11; 3-10		3	31	***	1	186	0,90	2,07	3,28	
NO2-41-6/4	6/4	1,6	950	4,21	Y	208/133	110	0,35	36	1-8; 2-7	Однослойная	2	49	1	1	294	0,86	2,25	4,26	26
M = const		2,3	1440	5,2	Y					1-12; 2-11; 3-10		3	37	****	1	222	0,96	2,48	3,03	
AO2-42-6/4	6/4	2,1	950	5,46	Y	208/133	148	0,35	36	1-8; 2-7	Однослойная	2	38	1	1	228	0,96	2,51	3,07	26
M = const		3,0	1440	5,87	Y					1-12; 2-11; 3-10		3	29	****	1	174	1,12	3,01	1,97	
AO2-41-8/4	8/4	1,6	685	4,8	Δ/ΥΥ	208/144	110	0,35	36	1-6	Двухслойная	3	54	1	1	648	0,8	4,23	10,7	33
		2,5	1370	5,44											2	324			2,68	
AO2-42-8/4	8/4	2,3	685	6,87	Δ/ΥΥ	208/144	148	0,35	36	1-6	Дв у хслойная	3	40	1	1	480	0,93	4,90	6,82	33
		3,9	1370	8,35											2	240			1,70	
AO2-41-6/4/2	6	1,7	940	4,47	Y	208/133	110	0,35	36	1-8; 2-7	Однослойная	2	49	1	1	294	0,86	2,25	4,26	26
	4/2	2,0	1440	4,7	Δ/ΥΥ					1-11	Дв у хслойная	6	35	1	1	420	0,69	2,61	11,9	
		2,4	2800	5,54											2	210			2,99	

Тип электро-		Р,		l ₁ ,	Соеди-						Ста	тор			·	·	1		T	Ротор
двигателя	2р	кВт	П, МИН ⁻¹	Α	нение фаз	D _c /d _c ,	_ L, мм	δ, мм	Ζį	y 1	Тип обмотки	n _{K1}	W _K 1	m ₁	a ₁	wφ	Диаметр провода, мм	G ₁ , κε	r ₁ ,	Z ₂
AO2-42-6/4/2	6	2,1	940	5,46	Y	208/133	148	0,35	36	1-8; 2-7	Однослойная	2	38	1	1	228	0,96	2,51	_3,07	26
	4/2	2,4	1440	5,5	Δ/ΥΥ					1-11	Дв у хслойная	6	30	1	1	360	0,74	2,90	10,0	
		2,9	2800	6,6			1								2	180			2,50	
Примеч	ание.	Обм	отку с	татор	а выпол	няют пр	 оводо	ом ма	рки	ПЭТВ.									•	
			Табли	ца 8.38	3. Обмог	почные	данні	ые мі	1020	скоростных	к электродв	uzar	пеле	ŭ AC)2 5-e	o 2a6	iapuma			
Тип электро-		Р,			Соеди-						Ста	тор								Рото
двигателя	2 p	г, кВт	п, мин ⁻¹	I ₁ , A	нение фаз	D _c /d _c , MM	L, mm	δ, мм	Z ₁	y 1	Тип обмотки	n _K 1	W _K 1	m ₁	a ₁	wφ	Диаметр провода, мм	G1, κΓ	r ₁ , Ом	Z ₂
AQ2-51-4/2	4/2	6,1	1450	12,8	Δ/ΥΥ	243/158	135	0,45	36	1-11	Двухслойная	6	22	1	1	2 64	1,5	9,0	1,87	2 6
	•	7,3	2880	15,0											2	132			0,468	
AO2-52-4/2	4/2	8,3	1450	17,6	Δ/ΥΥ	208/158	170	0,45	36	1-11	Двухслойная	6	18	2	1	216	1,16	10,8	1,41	2 6
		10,2	2880	20,5											2	108			0,353	
AO2-51-6/4	6/4	3,7	960	8,9	Y	243/158	135	0,45	36	1-8; 2-7	Однослойная	2	33	1.	1	198	1,35	4,4	1,4	2 6
P = const			1470	8,06	Y					1-12; 2-11; 3-10		3	25	1	1	150	1,25	3,38	1,44	
AO2-52-6/4	6/4	4,7	940	10,9	Y	243/158	170	0,45	36	1-8; 2-7	Однослойная	2	27	1	1	162	1,50	4,98	1,03	26
P = const			1470	10,1	Y					1-12; 2-11; 3-10		3	20	1	1	120	1,40	3,73	1,02	
AO2-51-6/4	6/4	3,1	960	7,7	Y	243/158	135	0,45	36	1-8; 2-7	Однослойная	2	35	1	1	210	1,2	3,73	1,87	26
M = const		4,7	1450	10,7	Y	,				1-12; 2-11; 3-10		3	23	1	1	138	1,45	4,17	0,99	

Z2

26

G1,

KΓ

4,18

4,73

۲1,

Ом

1,14

0,724

0,218

Диаметр

провода, мм

1,40

1,62

		0,1	1450	10,2						3-10							.,	"-	· .	
02-51-8/4	8/4	3,0	685	8,1	Δ/Υ	y 243/	173 13	5 0,4	4 36	1-6	Двухслойная	3	36	1	1	423	1,12	6,5	1,32	26
		4,8	1370	9,8											2	216			1,08	
AO2-52-8/4	8/4	4,1	695	10,9	Δ/Υ	243/	173 19	0 0,4	4 36	1-	Двухслойная	3	27	1	1	324	. 1,3	7,85	2,87	26
		6,6	1370	13,4											2	162			0,717	
AO2-51-6/4/2	6	3,0	940	7,8	Y	243/	158 13	5 0,4	5 36	1-8; 2-7	Однослойная	2	35	1	11	210	1,20	3,73	1,88	26
	4/2	3,3	1440	7,3	Δ/Υ	Y				1-10	Двухслойная	6	28	1	1	336	0,93	4,46	6,26	
		4,0	2850	9,11				_							2	168			1,57	
AO2-52-6/4/2	6	4,0	940	10,1	Y	243/	158 17	0 0,4	5 36	1-8; 2-7	Однослойная	2	28	1	1	168	1,35	4,18	1,33	26
	4/2	4,5	1440	9,8	Δ/Υ	Y				1-10	Двухслойная	6	22	1	1	264	1,04	4,8	4,3	
		5,7	2850	12,8											2	132			1,07	
Примеч	ание.	. Ướn			-		-		-		х электроде	suzan	пеле	ŭ AC	02 6 - 2	о габ	iapuma			
THE SHOUTDAR			D (, C	реди-			ıı		С	татор								Ротор
Тип электрода гателя	зи-			1, iH ⁻¹	Ι ₁ , Η		D _c /d _c ,	L,	δ, мм	z ₁ y ₁	С	татор пк1	W _K 1	m ₁	a ₁	Wφ	Диаметр провода, мм	G ₁ ,	г ₁ ,	Ротор z 2
гателя	-	^{2р} •	кВт ми	ін-1	A H	ение фаз			· '	z ₁ y ₁ 36 1-11		<u>-</u>			a ₁	w _Φ			Ом	Z 2
• • • •	-	1/2 · 3	кВт ми 8,5 14	ін ⁻¹ 150 1	A H	ение фаз	мм	ММ	ММ		Тип обмотки	N _K 1	W _K 1	m ₁	a ₁		провода, мм	КГ	Ом	Z 2

Соеди.

нение

фаз

Υ

Υ

D_c/d_c,

мм

243/158

δ,

мм мм

170 0,45

Z1

36

y1

1-8; 2-7

1-12; 2-11;

Ρ,

кВт

4,5

6,7

2p

6/4

Π,

мин⁻¹

960

1450

2880

14,5

25,8

Ii, A

10,3

13,2

Тип электро-

двигателя

AO2-52-6/4

M = const

Статор

 $\Pi_{K1} \mid W_{K1} \mid \Pi_{1}$

2 26

3 19

a₁

2 90

1

1

156

114

Тип обмотки

Однослойная

T		_		١.	Соеди-		_		_		(Статор								Ротор
Тип электродви- гателя	2р	P, kBt	п, м ин ⁻¹	I ₁ ,	нение фаз	D _c /d _c ,	L,	δ, мм	Z 1	y 1	Тип обмотки	n _{k1}	W _{K1}	m ₁	aı	Wφ	Диаметр провода, мм	G ₁ ,	г ₁ ,	22
AO2-61-8/4	8/4	5,5	69 5	13,8	Δ/ΥΥ	291/206	150	0,4	54	1-8	Двухслойная	4и5	20	1	1	360	1,45	9,8	2,30	44
		8,5	1400	17,3											2	180			0,575	
AO2-62-8/4	8/4	7,0	700	17,1	Δ/ΥΥ	291/206	190	0,4	54	1-8	Двухслойная	4и5	15	1	1	270	1,62	10,4	1,60	44
		10,5	1400	21,1											2	135			0,40	
AO2-61-12/6	12/6	3,2	460	11,3	Δ/ΥΥ	291/206	150	0,4	54	1-6	Двухслойная	3	25	1	1	450	1,30	8,8	3,16	44
		6,0	920	12,9											2	225			0,79	
AO2-62-12/6	12/6	3,8	465	14,2	Δ/ΥΥ	291/206	190	0,4	54	1-6	Двухслойная	3	21	1	1	378	1,40	9,86	2,64	44
		7,5	920	15,4		1									2	189			0,66	
AO2-61-8/6/4	8/4	3,8	710	10,3	Δ/ΥΥ	291/206	150	0,4	54	1-8	Двухслойная	4и5	20	1	1	360	1,08	5,48	4,16	44
		6,0	1450	12,6											2	180			1,04	1
	6	4,8	950	11,5	Υ					1-8	Двухслойная	3	17	1	2	306	0,96	3,71	1,12	
AO2-62-8/6/4	8/4	4,8	710	12,6	Δ/ΥΥ	291/206	190	0,4	54	1-8	Двухслойная	4 n 5	17	1	1	306	1,20	6,53	3,6	44
		7,5	1430	15,4											2	153			0,9	
	6	5,7	950	12,6	Υ					1-8	Двухслойная	3	15	1	2	270	1,04	4,34	0,965	
AO2-61-12/8/6/4	12/6	1,6	460	7,02	Δ/ΥΥ	291/206	150	0,4	54	1-6	Двухслойная	3	31	1	1	558	0,80	4,15	10,7	44
	,	3,2	910	7,22											2	279			2,68	
•	8/4	3,2	700	8,65	Δ/ΥΥ					1 –8	Двухслойная	4 и 5	22	1	1	396	0,90	4,16	2,68]
		5,0	1400	10,6											2	198		•	1,67	1
AO2-62-12/8/6/4	12/6	2,0	470	8,52	Δ/ΥΥ	291/206	190	0,4	54	1-6	Двухслойная	3	24	1	1	432	0,90	4,92	7,4	44
		4,6	910	10,2											2	216	_		1,85	
	8/4	4,6	700	10,7	Δ/ΥΥ		ļ			18	Двухслойная	4 n 5	17	1	1	306	1,04	4,64	4,08	
		6,5	1400	13,6											2	153			1,02	

Таблица 8.40. Обмоточные данные многоскоростных электродвигателей АО2 7-го габарита Статор Ротор Соеди-I₁, A нение D_c/d_c, δ, Диаметр G₁, мин-1 r₁, Тип обмотки \mathbf{w}_{Φ} Z1 **y**1 n_{K1} W_K1 m_1 a۱ **Z**2 фаз провода, мм Ом мм мм мм 17.4 0,546 44 1450 32.0 ΔM 343/214 165 0.7 36 1-11 Двухслойная 6 12 3 144 1.40 0.136 2880 38.5 2 72 1450 343/214 205 0.7 36 1-11 Двухслойная 6 10 3 120 1.56 19,4 0.397 44 38.7 ΔM Обмоточные данные электрических машин 0.099 2880 47,5 60 2 252 12,6 700 22.7 ΔM 343/245 165 0.5 54 1-8 Двухслойная 4 u 5 1.30 1,19 0,297 1400 28,2 126 700 30.2 ΔM 343/245 205 0,5 54 1 -8 Двухслойная 4 и 5 12 2 216 1.50 16,0 0.256 1.400 26.6 1 02 0.214 44 44 44 44

90

414

207

288

2

2 144 1,30

1.0

1,20

4,8

5,3

6.0

0,452

5,55

1,39

3,08

0,77

44

		19,5	1400	36,6]							2	100			0,214
AO2-71-12/6	12/6	6,4	470	22,6	Δ/ΥΥ	343/245	165	0,5	54	1-6	Двухслойная	3	18	2	1	324	1,20	12,3	1,61
		11,0	9 50	22,1	*										2	162			0,405
AO2-72-12/6	12/6	7,5	480	28,4	Δ/ΥΥ	343/245	205	0,5	54	1-6	Двухслойная	3	14	2	1	252	1,40	14,7	1,04
		14,0	950	30,1											2	126			0,252
AO2-71-8/6/4	8/4	7,1	72 5	17,5	Δ/ΥΥ	343/245	165	0,5	54	1-8	Двухслойная	4 n 5	15	1	1	270	1,40	7,9	2,13
		10,5	1450	21,2											2	135			0,532
	6	8,3	965	17,9	Υ	1				1-8	Двухслойная	3	7	2	1	126	1,16	4,9	0,717
AO2-72-8/6/4	8/4	9,2	72 5	22,4	Δ/ΥΥ	343/245	205	0,5	54	1-8	Двухслойная	4 n 5	12	1	1	216	1,56	8,4	1,54
		13.5	1450	27 N												108			0.384

54

1-8

1-6

1-8

Двухслойная

Двухслойная

Двухслойная

3 5 2

3

4 n 5 16

23

1

1

Тип электродви-

гателя

A02-71-4/2

AO2-72-4/2

AO2-71-8/4

AO2-72-8/4

AO2-71-12/8/6/4

Ρ,

кВт

15.5

19.5

19.0

24.5

14.5

13.5

10 5

965

480

930

710

1420

22,8

12,6

12,2

14.5

17,9

Υ

Δ/ΥΥ

 ΔM

343/245

165

0,5

2p

4/2

4/2

8/4 10.0

8/4

6 10,7

12/6 3,3

8/4

5.8

5.8

8.6

Ро гор

гателя	2р	Р, кВт	ин ^{- (}	Iı, A	нени е фаз	D _c /d _c ,	L, MM	δ, мм	Zį	y 1	Тип обмотки	П _К 1	w _{k1}	m ₁	a ₁	wφ	Диаметр провода, мм	G 1, кг	r ₁ , Ом	Z 2
AO2-72-12/8/6/4	12/6	4,2	480	15,5	Δ/ΥΥ	343/245	205	0,5	54	1-6	Двухслойная	3	17	1	1	306	1,20	6,2	3,24	44
		8,5	9 30	17,5											2	153			0,81	
•	8/4	7 ,5	710	18,3	Δ/ΥΥ					1 –8	Двухслойная	4и5	13	1	1	234	1,35	6,75	2,21	
		12,0	1420	23,9											2	117			0,552	
		Таб	лица	8.41. O	бмоточ	іные дан	ные	мног	оскор	остнь	іх электрод	Buzan	пеле	ŭΑC)2 8-e	о габ	apuma			
		Таб	лица	8.41. O	бмоточ	іные дан	ные	мног	оскор	остнь	іх электрод	euzan	пеле	ŭ AC)2 8-e	о габ	apuma			
		р	_		Соеди-			,		,	(Статор			,					Ротор
Тип электродви- гателя	2р	Р, кВт	п, мин ⁻¹	I ₁ , A	Соеди- нение фаз	D _c /d _c ,	L,	δ, мм	Z 1	y 1	Тип обмотки	Статор п _{к1}	w _{K1}	m ₁	a ₁	wφ	Диаметр провода, мм	G ₁ , кг	r ₁ , Ом	Ротор z ₂
•	2p			I ₁ , A	нение				z ₁	y ₁				m ₁	a ₁	w _φ		КГ		
гателя		кВт	мин ⁻¹	***************************************	нен ие фаз	ММ	мм	мм			Тип обмотки	П _{к1}	W _K 1		a ₁		провода, мм	КГ	Ом	Z ₂
гателя AO2-81-4/2		кВт 32	мин ⁻¹ 1450	58, 9	нен ие фаз	ММ	мм	мм			Тип обмотки	П _{к1}	W _K 1		1	112	провода, мм	КГ	Ом 0,232	Z ₂
гателя	4/2	кВт 32 38	мин ⁻¹ 1450 2940	58, 9 69 ,5	нение фаз Δ/YY	393/247	190	мм 0,9	48	1-14	Тип обмотки Двухслойная	п _{к1}	w _{k1}	5	1	112	1,5	кг 27,6	Ом 0,232 0,058	58

Соеди-

Р, кВт

Π,

Тип электродви-

	.,-	"-		,-	۵, ۰۰	000,211		٠,٠		' ''	D-)//0//0//		1 '	_			.,-	,-	1	
		38	2 9 40	69,5											2	56			0,058	ı
AO2-82-4/2	4/2	38	1450	68,7	Δ/ΥΥ	393/247	245	0,9	48	1-14	Двухслойная	8	6	6	1	9 6	1,45	30,4	0,204	58
		45	2940	80,7											2	48			0,051	ı
AO2-81-8/4	8/4	19,0	73 5	41,6	Δ/ΥΥ	393/285	190	0,6	72	1-11	Двухслойная	6	8	3	1	192	1,50	22,5	0,538	58
		28,0	1460	51,9											2	96			0,135	
AO2-82-8/4	8/4	24,0	7 35	51,8	Δ/ΥΥ	3 9 3/285	260	0,6	72	1-11	Двухслойная	6	6	4	1	144	1,50	26,4	0,354	58
		34,0	1470	61,7											2	72			0,885	
AO2-81-12/6	12/6	10,0	490	32,1	Δ/ΥΥ	393/285	190	0,6	72	1-8	Двухслойная	4	11	2	1	264	1,56	19,7	0,905	58
		19,0	970	36,8											2	132			0,226	
AO2-82-12/6	12/6	14,0	490	44,4	Δ/ΥΥ	393/285	260	0,6	72	1-8	Двухслойная	4	8	3	1	192	1,50	23,0	0,556	58
		25,0	970	47,9											2	96			0,139	ı

Zo

Диаметр

1.50

1.62

1.25

Диаметр

провода, мм

1.62

1.62

WΦ

216

120

168

 \mathbf{W}_{Φ}

120

60

96

2

G1.

8.35

11.0

10.5

Gi.

34.7

40.0

1.79

0.447

1.75

0.438

1.15

0,29

r₁, O_M

0.214

0.0535

0,168

0.0419

58

Ротор

22

58

58

٢1,

Фаз Ом мм провода, мм KΓ мм мм 12.3 0.983 58 31.0 Δ/ΥΥ 393/285 190 0.6 72 1 - 11Двухслойная 6 8 2 192 1.35 AO2-81-8/6/4 8/4 13.0 725 2 96 0.244 19.0 1450 36.9 96 8.85 0.340 965 30.5 1-11 Двухслойная 2 1.62 15.0 γ 4 2 168 1.45 12.4 0.855 58 725 ΔΛΥ 393/285 260 0.6 72 1-11 Двухслойная 6 7 AO2-82-8/6/4 8/4 17.0 36.2 2 84 0.217 1450 47.4 25.0 965 39.2 Двухслойная 3 4 72 1,30 8.6 0.230 20.0 γ 1-11 9.85 58 AO2-81-12/8/6/4 12/6 5.6 485 18.6 ΔM 393/285 190 0.6 72 1-8 Двухслойная 13 1 312 1.45 2.44 2 156 12.0 930 23,8 0.61

1-11

y1

15,0 13.0 725 29,9 $\Delta / \Upsilon \Upsilon$ 8/4 1-11 29.0

Соеди-

нение

Dc/dc.

L.

δ,

 I_1, A

мин-1

кВт

Тип электродви-

гателя

AO2-82-12/8/6/4

Тип электродви-

гателя

AO2-91-8/4

AO2-92-8/4

20

8/4

12/6

9.0

710

21.6

l₁,

68.0

90,8

91.2

14760 115,2

мин⁻¹

735

1470

735

кВт

50,6

46,8

65.4

8/4 34,4

8/4

 ΛM

Соеди-

нение

фаз

Δ/ΥΥ

 ΔM

960 29.5

108 2 15.0 1420 27.9 393/285 0.6 72 6 10 240 8.0 485 24.3 ΔMY 260 1

1-8 Двухслойная

Тип обмотки

Двухслойная

Двухслойная

Двухслойная

Статор

 Π_{K1}

 W_{K1} m_1 аı

9

7 2

Статор

5

6

2 48

Πx 1 Wr1 m_1 аı

6

1

Тип обмотки

Двухслойная 84 1445 38.2 2

Zι **V**1

δ.

ММ

0.7 72 1-11

мм

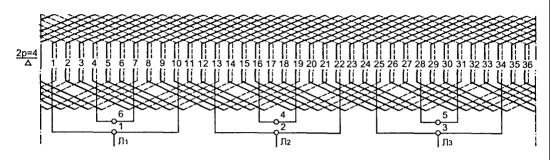
240

330 0.7 72 1-11

Таблица 8.42. Обмоточные данные многоскоростных электродвигателей АО2 9-го габарита

Примечание. Обмотку статора выполняют проводом марки ПЭТВ.

D_c/d_c,


мм

458/334

458/334

T 0.00		n	_	,	Соеди-							Стат	ор							Ротор
Тип электродви- гателя	2 p	Р, кВ т	п, мин ⁻¹	I ₁ , A	нение фаз	D _c /d _c ,	L,	δ, мм	21	y 1	Тип обмотки	Π _K 1	W _K 1	m ₁	a ₁	wφ	Диаметр провода, мм	Gι, κΓ	r ₁ , Om	22
AO2-91-12/6	12/6	22,0	490	53,0	Δ/ΥΥ	458/334	240	0,7	72	1-8	Двухслойная	4	7и8	4	1	180	1,45	28,2	0,433	58
		35,8	975	67,2											2	90			0,108	
AO2-92-12/6	12/6	29,5	49 0	71,0	Δ/ΥΥ	458/334	330	0,7	72	1-8	Двухслойная	4	5и6	5	1	132	1,56	36,0	0,264	58
		53,3	975	99,3											2	66			0,066	
AO2-91-8/6/4	8/4	24,0	725	49,3	Δ/ΥΥ	458/334	240	0,7	72	1-11	Двухслойная	6	6	3	1	144	1 ,45	19,6	0,532	58
		31,9	1450	48,0											2	72			0,133	
	6	26,0	970	51,4	Y					1-11	Двухслойная	4	8	2	3	64	1,25	12,9	0,159	
AO2-92-8/6/4	8/4	32,7	725	65,9	Δ/ΥΥ	458/334	330	0,7	72	1-11	Двухслойная	6	4	4	1	96	1,56	23,0	0,269	58
		48,0	1450	66,5											2	48			0,0675	
	6	36,2	970	92,1	Y					1-11	Двухслойная	4	6	2	3	48	1,45	15,1	0,104	
AO2-91-12/8/6/4	12/6	13,2	485	35,8	Δ/ΥΥ	458/334	240	0,7	72	1-8	Двухслойная	6	8	2	1	192	1,40	14,0	0,996	58
		22,6	9 60	43,5											2	96			0,249	
	8/4	19,9	725	40,5	Δ/ΥΥ					1-11	Двухслойная	4	6	2	1	144	1,62	16,4	0,641	
		27,7	1445	52,2											2	72			0,160	
AO2-92-12/8/6/4	12/6	18,9	485	49,0	Δ/ΥΥ	458/334	330	0,7	72	1-8	Двухслойная	6	6	2	1	144	1,62	17,2	0,670	58
		32,4	9 60	61,7											2	72			0,167	
	8/4	26,6	72 5	55,0	Δ/ΥΥ					1-11	Двухслойная	4	5	3	1	120	1,40	17,9	0,560	
		39,1	1445	72,9											2	60			0,140	

8.7.2. Примеры схем обмоток статора двухскоростных электродвигателей с переключением Δ/ΥΥ

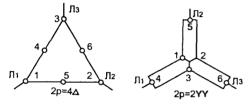


Рис. 8.1. Схема выводов обмотки статора, соединение выводов и подключение к сети:

• Соединение

2p = 4

 $J_1 - 1$

 $\Pi_2 - 2$ $J_3 - 3$

Свободны 4, 5, 6

2p = 2

 $J_1 - 4$

 $\Pi_9 - 5$

Соединение Δ

2p = 8

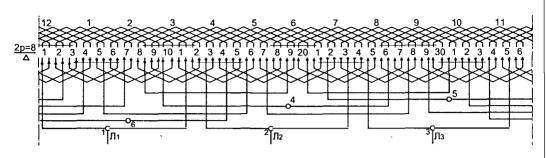
 $\Pi_{\iota} - 1$

 $\Pi_2 - 2$

 $J_3 - 3$

Свободны 4, 5, 6

• Соединение ҮҮ


2p = 4

 $J_i - 4$

 $\Pi_2 - 5$

 $\Pi_3 - 6$

Y - 1, 2, 3

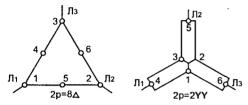
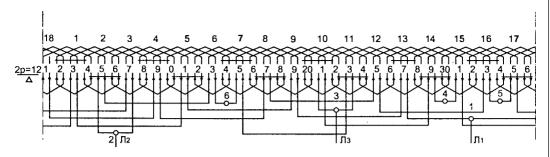


Рис. 8.2. Схема выводов обмотки статора, соединение выводов и подключение к сети:

• Соединение Δ

2p = 8

 $J_1 - 1$


 $J_2 - 2$ $J_3 - 3$

Свободны 4, 5, 6

• Соединение ҮҮ

2p = 4

 $\dot{\Pi}_1$ — 4 $J_2 - 5$

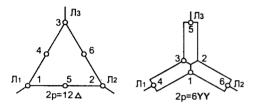


Рис. 8.3 Схема выводов обмотки статора, соединение выводов и подключение к сети:

• Соединение Δ

2p = 12

 $J_1 - 1$

Свободны 4, 5, 6

• Соединение ҮҮ

2p = 6

 $J_1 - 4$

8.7.3. Обмоточные данные многоскоростных электродвигателей серии 4А132

						Статор											Ротор		
Тип электродви- гателя	2 p	P, ĸBT	U ₁ , B	I ₁ ,	п, мин ⁻¹	D _c /d _c ,	L, MM	δ, мм	Z ₁	Тип обмотки	Диаметр провода, мм	Sn	a ₁	W _K 1	y 1	r ₁ , Ом	G ₁ , κΓ	Соеди- нение фаз	22
4A132S4/2Y3	4	6,0	127	37	1460	225/145	115	0,35	36	Двухслойная	1,16	8 тр.х3	1	96	1-10	0,321	4,96	Δ	34
4AB132A4/2Y3 4A132S4/2T2			220	22							1,08	14 дв.х2	1	168		0,972	5,02		
4A132S4/2Y2			380	12							1,16	24x2	1	288		2,89	4,96		
4A132S4/2XУ3 4A132S4/2XЛ1			500	9,5							1,08	32x2	1	384		5,20	4,93		
4A132S4/2CY1			660	7,2							0,90	42x2	1	504		8,44	5,23		
	2	6,7	127	43	2910						1,16	8 тр.х3	2	48		0,803	4,96	YY	
			22 0	25						÷	1,08	14 дв.х2	2	84		0,243	5,02		
			380	14						-	1,16	24x2	2	144	,	0,723	4,96		
			500	11					-		1,00	32x2	2	192		1,30	4,93		
			660	8,3							0,90	42x2	2	252		2,11	5,23		
4A132M4/2Y3 4A132B4/2Y3	4	8,5	127	51	1460	225/145	160	0,35	36	Двухслойная	1,35	6 тр.х2	1	72	1-10	0,206	5,78	Δ	34
4A132M4/2T2			220	29							1,25	11 дв.х2	1	132		0,657	6,05		
4A132M4/2Y2 4A132S4/2XY3			380	17							0,96	18 дв.х2	1	216		1,83	5,85		
4А132S4/2ХЛ1			500	13							1,16	24x2	1	288		3,33	5,72		
4A132M4/2CY1			660	9,8		,				•	1,04	31x2	1	372		5,36	5,94		
	2	9,5	127	60	2910						1,35	6 тр.х2	2	36		0,514	5,78	YY	
			220	35							1,25	11 дв.х2	2	- 66		0,164	6,05		
			380	2 0							0,96	18 дв.х2	2	106		0,457	5,85		
			500	15							1,16	24x2		144		0,831	5,72		
			660	12				: تستح			1,04	31x2	2	186		1,34	5,94		

		·									Cī	атор							Ротор
Тип электродви- гателя	2р	Р, кВт	U ₁ , B	I ₁ ,	п, мин ⁻¹	D _c /d _c ,	L, MM	δ, мм	Zı	Тип обмотки	Диаметр провода, мм	Sn	aı	W _K !	y 1	г ₁ , Ом	G _I ,	Соеди- нение фаз	Z 2
4A1 3258/4Y3	4	3,2	1 27	27	720	2 2 5/158	115	0,35	48	Двухслойная	1,08	10 дв.х2	1	160	1–7	0,333	3,8	Δ	44
4A1 32A8/4Y3 4A1 32S8/4T2			220	15							1,16	17x2	1	272		2,16	3,72		
4A1 32S8/4Y2 4A1 32S8/4XY3			380	8,9							0,90	29x2	1	464		6,15	3,82		
4A1 32S8/4XЛ1 4A1 32S8/4CУ1			500	6,8							0,77	38x2	1	608		11,0	3,65		
4A13200/4031			660	5,1							0,67	50x2	1	800		19,1	3,65		
	2	5,3	1 27	33	1440						1,08	10 дв.х2	2	80		0,183	3,8	YY	
			220	19							1,16	17x2	2	136		0,54	3,72	·	
			380	11							0,90	2 9x2	2	232		1,535	3,82		
			500	8,5							0,77	38x2	2	304		2,75	3,65		
			660	6,4							0,67	50x2	2	400		4,77	3,65		
4A132M8/4Y3	4	4,2	1 27	33	720	225/158	160	0,35	48	Двухслойная	1,30	7 двх2	1	112	1-7	0,422	4,66	Δ	44
4A1 32B8/4Y3 4A1 32M8/4T2			220	19				,			1,35	13x2	1	208		1,46	4,57		
4A132M8/4Y2 4A132M8/4XY3			380	11							1,04	22x2	1	352		4,16	4,62		
4A132M8/4XЛ1 4A132M8/4CУ1			500	8,4							0,90	29x2	1	464		7,31	4,55		
4A1021110/4031			660	6,4							0,77	38x2	1	608		13,1	4,35	ļ 	
	2	7,1	127	41	1440						1,30	7 двх2	2	56		0,1057	4,66	YY	
			220	24							1,35	13x2	2	104		0,365	4,57		
			380	14							1,04	22x2	2	176		1,04	4,62		
			500	10							0,90	2 9x2	2	232		1,83	4,55		
			660	7,9							0,77	38x2	2	304		3,27	4,35	L	

											Ст	атор							Ротор
Тип электродви- гателя	2р	Р, кВт	U ₁ , B	I ₁ , A	п, мин ⁻¹	D _c /d _c ,	L,	δ, мм	Z ₁	Тип обмотки	Диаметр провода, мм	Sn	a ₁	W _K 1	y 1	rı, Om	G ₁ ,	Соеди- нение фаз	Z ₂
4A132S6/4/2Y3	6	2,8	127	22	960	225/145	115	0,35	36	Однослойная	1,12	11 дв.	1	66	1-8; 2-7	0,292	1,76	Υ	34
4A132A6/4/2Y3 4A132S6/4/2T2 4A132S6/4/2Y2			220	13							1,16	20	1	120	2-1	0,990	1,72		
4A132S6/4/2XУ3 4A132S6/4/2XЛ1			380	7,3							0,90	34	1	204		2,80	1,76		
4A132S6/4/2CY1			500	5,6							0,77	45	1	270		5,07	1,70		
			660	4,2							0,67	59	1	354		8,78	1,68		
	4	3,6	127	24	1450					Двухслойная	0,96	9 дв.х2	1	108	1-10	0,796	2,55	Δ	
			220	14			,				1,08	15x2	1	180		2,08	2,71		
			380	8,1							0,83	25x2	1	300		5,90	2,65		
			500	6,1							0,72	33x2	1	396		10,38	2,65		
			660	4,7	, ,						0,64	43x2	1	516		17,10	2,73		
	2	4,2	127	30	2900						0,96	9 дв.х2	2	54		0,190	2,55	· YY	
			220	17							1,08	15x2	2	90		0,52	2,71		
			380	9,9							0,83	25x2	2	150		1,475	2,65		
			500	7,5		,					0,72	33x2	2	198		2,59	2,65		
			660	5,7							0,64	43x2	2	258		4,27	2,73		

											Ст	атор							Ротор
Гип Электродви- гателя	2р	Р, кВт	U ₁ , B	1 ₁ ,	п, мин ⁻¹	D _c /d _c ,	L,	δ, мм	Z ₁	Тип обмотки	Диаметр провода, мм	Sn	aı	W _{K1}	У1	r ₁ , Ом	G ₁ ,	Соеди- нение фаз	Z2
A132S8/4/2Y3 A132A8/4/2Y3	8	1,8	127	18	710	225/145	115	0,35	36	Однослойная	1,08	15 дв.	1	90	1-6; 2-5;	0,384	2,01	Y	34
A132S8/4/2T2 A132S8/4/2Y2			220	10							1,16	27	1	162	1-6	1,20	2,08		
A132S8/4/2XУ3 A132S8/4/2XЛ1			380	6							0,90	46	1	276		3,41	2,12		
A132S8/4/2CY1			500	4,6							0,77	60	1	360		6,06	2,03	1	
			660	3,4							0,67	80	1	480		10,66	2,05		
	4	3,0	127	31	1460					Двухслойная	1,25	9x2	1	108	1-10	0,934	2,17	Δ	
			220	12							0,96	15x2	1	180		2,64	2,13		
			380	7,2							0,74	25x2	1	300		7,42	2,11		
			500	5,4							0,64	33x2	1	396		13,1	2,09		
			660	4,1							0,57	43x2	1	516		21,5	2,16		
	2	3,6	127	27	2920						1,25	9x2	2	54		0,234	2,17	γγ	
			220	16							0,96	15x2	2	90		0,66	2,13		
			380	9,1							0,74	25x2	2	150	-	1,856	2,11		
			500	6,9							0,64	33x2	2	198		3,27	2,09		
			660	5,2							0,57	43x2	2	258		5,38	2,16		

	-	tunte. Fis.									Cī	атор							Ротор
Тип электродви- гателя	2р	P, ĸBτ	U ₁ , B	I ₁ , A	n, м ин ⁻¹	D _c /d _c ,	L,	δ, мм	Z 1	Тип обмотки	Диаметр провода, мм	Sn	a ₁	W _{K1}	y 1	ř1, OM	G _i , κr	Соеди- нение фаз	Z 2
4A132M8/4/2Y3 4A132B8/4/2Y3	8	2,4	127	23	720	225/145	160	0,35	3,6	Однослойная	1,25	11 дв.	1	66	1-6; 2-5;	0,254	2,37	Y	34
4A1 32M8/4/2T2 4A1 32M8/4/2Y2			220	13							1,30	20	1	120	1-6	0,855	2,33		
4A1 32M8/4/2XУ3 4A1 32M8/4/2XЛ1			380	7,6							1,0	34	1	204		0,46	2,33		
4A1 32M8/4/2CY1			500	5,8							0,86	45	1	270		4,40	2,32		
			660	4,4							0,77	59	1	354		7,18	2,40		
	4	4,5	127	31	1460					Двухслойная	1,04	6 дв.х2	1	72	1-10	0,52	2,31	Δ	
			220	18							1,16	10x2	1	120		1,386	2,39		
			380	10							0,86	18x2	1	216		4,55	2,36		
			500	7,9							0,74	24x2	1	288		8,20	2,34		
			660	6,1							0,67	31 x2	1	372		12,9	2,47		
	2	5,0	127	36	2940						1,04	6 дв.х2	2	36		0,13	2,31	Υ	
			220	21							1,16	10x2	2	60		0,346	2,39		
			380	12							0,86	1 8x2	2	108	,	1,14	2,36		
			500	9,3							0,74	24x2	2	144		2,05	2,34		
			660	7,0							0,67	31x2	2	186	_	3,23	,247		

											Ст	атор							Ротор
Тип электродви- гателя	2р	P, ĸBt	U ₁ , B	l ₁ , ^	п, мин ⁻¹	D _c /d _c , мм	L, MM	δ, мм	z ₁	Тип обмотки	Диаметр провода, мм	Sn	a۱	W _K 1	Уı	r ₁ , Ом	G ₁ , ĸr	Соеди- нение фаз	z ₂
4A132S8/6Y3	8	2,4	127	21	710	225/158	115	0,35	54	Двухслойная	1,04	5 дв.х2	1	90	1-7	0,42	1,88	Υ	51
4AB132A8/6Y3 4A132S8/6T2			220	12							1,08	9x2	1	162		1,393	1,82		
4A132S8/6Y2 4A132S8/6XY3			380	6,9							0,86	15x2	1	270		3,68	1,92		
4A132S8/6XЛ1 4A132S8/6CУ1			500	5,3							0,74	20x2	1	360		6,64	1,90		
4A13258/0091			660	4,0							0,64	26x2	1	468		11,54	1,85		
	6	2,6	127	21	970					Однослойная	1,08	7 дв.х2	1	63	1-12;	0,313	1,65	Y	
			220	12							1,15	13	1	117	2–11; 3–10	1,082	1,64		
			380	6,9							0,86	22	1	198		3,11	1,62		
			500	5,2							0,74	29	1	261		5,55	1,58		
			660	4,0							0,64	38	1	342		9,72	1,56		
4A132M8/6Y3	8	2,8	127	21	720	225/158	160	0,35	54	Двухслойная	1,16	4 дв.х2	1	72	1-7	0,324	2,24	Y	51
4AB132B8/6Y3 4A132M8/6T2			220	14							0,96	6 двх.2	1	108		0,711	2,28		
4A132M8/6Y2 4A132M8/6XY3			380	7,9							1,00	11x2	1	198		2,40	2,28		
4A132M8/6XЛ1 4A132M8/6CУ1			500	6,0							0,85	14x2	1	252		4,13	2,15		
4A102W0/0031			660	4,5	. <u></u> _			,			0,77	19x2	1	342		7,0	2,34		
	6	3,2	127	25	970					Однослойная	1,16	6 дв.	1	54	1–12; 211;	0,274	1,90	Y	
			220	14							1,25	10	1	90	3–10	0,786	1,84		
,			380	8,3							0,96	17	1	153		2,27	1,83		
			5 0 0	6,3							0,86	22	1	198	,	3,66	1,91		
·	<u></u>		660	4,8							0,74	29	1	261	!	6,53	1,87		

Ротор

		1			İ						U	атор					-		POTOP
Емпродд ви- гателя	2р	Р, кВт	U _I , B	l ₁ ,	п, ми н ⁻¹	D _c /d _c ,	L,	δ, мм	Ζţ	Тип обмотки	Диаметр провода, мм	Sn	a ₁	W _{K1}	y 1	r ₁ , Ом	G ₁ , кг	Соеди- нение Фаз	72
4A132M8/6/4Y3	6	2,8	1 27	22	960	225/158	160	0,35	54	Однослойная	1,04	6 дв.	1	54	1-12; 2-11;	0,341	1,53	Y	51
4AB132B8/6/4Y3 4A132M8/6/4T2			220	13						-	1,16	10	1	90	3–10	0,913	1,59		
4A132M8/6/4Y2 4A132M8/6/4XY3			380	7,3							0,86	18	1	162		3,0	1,56		
4A132M8/6/4XЛ1 4A132M8/6/4СУ1			500	5,5							0,74	24	1	216		5,40	1,45		
			660	4,2	,						0,64	31	1	279		9,30	1,49		
	8	2,6	127	23	720					Двухслойная	1,30	7x2	1	126	1-8	0,914	2,48	Δ	
			220	13							1,96	13x2	1	234		3,12	2,51		
			380	7,6							0,74	22x2	1	396		8,88	2,53		
			500	5,7							0,64	29x2 ·	1	522		15,65	2,50		
			660	4,3							0,57	38×2	1	684		25,85	2,59		
	4	4,5	127	29	1420						1,30	7x2	2	63		0,228	2,48	YY	
			220	17	1						1,96	13x2	2	117		0,78	2,51		
			380	9,8							0,74	22x2	2	198		2,22	2,53		
			500	7,4							0,64	29x2	2	261]	3,91	2,50	-	
			660	5,6							0,57	38x2	2	342		6,46	2,59		

Статоп

Примечания. 1. Марка провода обмотки статора для электродвигателей нормального исполнения ПЭТВ, для остальных электродвигателей --

ПЭТ-155. 2. Односторонняя толщина пазовой изоляции 0,25 мм класса В, для электродвигателей тропического исполнения — класса F.

8.7.4. Обмоточные данные многоскоростных электродвигателей серии ВАО 6—9-го габаритов на напряжение 380 В

T		_	_									Статор)						Ротор
Тип электродви- гателя	2р	Р, кВт	п, мин ⁻¹	I ₁ , A	Соедине- ние фаз	D _c /d _c ,	L, MM	δ, мм	Zį	y 1	Пэ1	m ₁	a 1	W _K 1	w φ	Диа метр провода, мм	G ₁ , кг	r 1,0m	Z 2
BAO 61-4/12	4	4	1460	9,4	Υ	291/206	150	0,45	54	1-12	13	1	1	6 и 7	117	1,16	2,9	1,57	68
	12	1,5	485	7,8	Υ					1-5	30	1	1	15	270	1,0	3,3	3,2	
BAO 62-4/12	4	5,5	1460	12	γ	291/206	210	0,45	54	1-12	11	1	1	5и6	99	1,3	3,5	1,21	68
	12	2,2	485	10,3	γ					1-5	22	1	1	11	198	1,2	4,2	2,0	
BAO 71-4/12	4	7,5	1430	16,5	Υ	343/245	190	0,55	54	1-10	14	1	1	7	126	1,45	5,15	1,16	44
	12	2,5	465	8,5	Υ					1 5	26	1	1	13	234	1,16	4,6	2,53	
BAO 72-4/12	4	10	1430	21	Υ	343/245	250	0,55	54	1-10	10	1	1	5	90	1,62	5,2	0,76	44
	12	3,5	465	11,5	Υ					1 5	20	1	1	10	180	1,4	6,1	1,575	
BAO 71-4/8	4	16	1 455	32	YY	343/245	190	0,55	54	1-8	48	2	2	12	108	1,25	6	0,3	44
	8	9	730	25	Δ								1		216			1,2	
BAO 72-4/8	4	21	1465	42	YY	343/245	250	0,55	54	1 –8	36	2	2	9	81	1,5	7,35	0,181	
	8	11	730	32,5	Δ								1		162			0,724	
BAO 72-4/6/8	4	13	1 440	27,5	YY	343/245	250	0,55	54	1-8	22	1	2	11	99	1,35	3,6	0,545	44
	6	8	715	23,5	Δ								1		198			2,18	
	8	8	960	19,5	Υ					1-8	11	1	1	6 и 5	99	1,5	4,7	0,915	
BAO 72-4/6	4	15	1455	32,5	Δ	343/245	250	0,7	36	1-8	18	1	1	9	108	1,62	6,2	0,905	46
	6	12	965	32,0	Δ					1-6	22	1	1	11	132	1,56	6,3	1,06	
BAO 81 -4/8	4	30	1470	56,5	YY	393/285	210	0,8	72	1-11	42	3	2	7	84	1,4	20	0,144	58
	8	17	740	43	Δ								1		168			0,576	

Тип электродви-	2р	P,	п,	1.	Соедине-		Ţ 	T	·		10°	Статор)						Ротор
гателя			мин-1	I ₁ , A	ние фаз	D _c /d _c ,	L, MM	δ, мм	Z ₁	y 1	Пэ1	m ₁	a ₁	W _K 1	wφ	Диаметр провода, мм	Gı, кг	г1, Ом	72
BAO 82-4/8	4	40	1475	75	YY	393/285	280	0,8	72	1-11	40	4	2	5	60	1,45	23,5	0,083	58
	8	22	740	58,5	Δ								1		120	•		0,332	
BAO 91 -4/8	4	48	1 455	97,5	YY	458/334	240	0,7	72	1-11	60	3	4	10	60	1,3	28	0,0675	58
	8	30	730	78	Δ								2		1 20			0,27	
BAO 92-4/8	4	60	1455	115	YY	458/334	330	0,7	72	1-11	48	3	4	8	48	1,2	34,8	0,0475	58
	8	40	730	96	Δ								2		96			0,19	, , ,
BAO 91-4/6/8	4	26	1475	55	YY	458/334	240	0,7	72	1–10	24	2	2	6	72	1,56	15,1	0,159	58
	8	18	735	46,5	Δ								1		144	,,,,,	10,7	0,636	00
	6	18	980	40	Υ					1-11	18	1	3	9	72	1,45	19,3	0,266	
BAO 92-4/6/8	4	35	1470	70,5	YY	458/334	330	0,7	72	1-10	30	3	2	5	60	1,45	10,8	0,121	58
	8	25	730	58	Δ								1		120	1,10	11,2	0,484	30
	6	25	980	54	Υ					1-11	18	2	2	4 и 5	54	1,35	12	0,204	
BAO 91-4/6/8/12	4	25	1470	54	YY	458/334	240	0,7	72	1-10	24	2	2	6	72`		11,2	0,212	72
	8	13	735	38	Δ							_	1		144	1,00	11,2	0,848	12
	6	6	975	35	YY				ŀ	1-8	36	2	2	9	108	1.16	12	0,408	
	12	9	490	33	Δ							- -	1		216	1,10	-		
AO 92-4/6/8/12	4	33	1470	68	YY	458/334	330	0,7		1-10	20	2	2	<u></u>	60	1,56		1,632	
	8	18	735	50	Δ	,		,	_			-	1	5	120	1,30		0,157	72
-	6	20	970	42,5	γγ				-	1-8	28	2	2	7	84	1.0		0,628	
	12	13	485	43	Δ			-			20		1	'	168	1,3	14	0,302	

Приложения

Таблица 1. Номинальные и допустимые значения диаметрое посадочных мест под подшипники на еалах электродвигателей

Tun OneurDollournzone	Harres arounding of him	Диаметр посадочного м	еста под подшипники, мм
Тип электродвигателя	Частота вращения, об/мин	номинальный	допустимый
	Электродвиг	атели 4А	
4AA56	Все частоты вращения	12 ±0,006	11,99
4AA63		15 ±0,006	14,99
4A71		20 +0,017/+0,002	19,99
4A80, 4A90		25 +0,017/+0,002	24,99
4A100		30 +0,017/+0,002	29,99
4A112	3000	35 +0,020/+0,003	34,98
	1500		34,99
	1000		
	750		
4A132	3000	45 +0,020/+0,003	44,98
-	1500		44,99
	1000		
	750	İ	
4A160	3000	50 +0,020/+0,003	49,98
	1500		49,99
	1000		
	750		
4A180	3000	60 +0,023/+0,003	59,98
	1500		59,99
	1000		•
	750		
4A200	3000	65 +0,023/+0,003	64,98
	1500		
	1000		64,99
	750		
4A225	3000	70 +0,023/+0,003	69,98
	1500		
	1000	<u> </u>	69,99
	750		

Тип электродвигателя	Частота вращения, об/мин	Диаметр посадочного ме	еста под подшипники, мм
	тастота вращения, обумин	номинальный	допустимый
4A250, 4A280	Все частоты вращения	85 +0,026/+0,003	84,98
4A315, 4AH315		95 +0,026/+0,003	94,98
4A355, 4AH355		110 +0,026/+0,003	109,98
	Электродвигатели /	1 2, AO2 и AOЛ2	
1 габарит	Все частоты вращения	20 +0,017/+0,002	19,99
2 габарит		25 +0,017/+0,002	24,99
3 габарит		30 +0,017/+0,002	29,99
4 габарит	3000	40 +0,020/+0,003	39,98
	1500		39,99
	1000		
5 габарит	3000	45 +0,020/+0,003	44,98
	1500		
	1000		44,99
	750		
6 габарит	Все частоты	45 +0,020/+0,003	44,98
7 габарит	3000	55 +0,023/+0,003	54,97
	1500		54,98
	1000		
	750		
8 габарит	3000	70 +0,023/+0,003	69,97
	1500		69,98
	1000		
	750		
9 габарит	3000	85 +0,026/+0,003	84,97 .
	1500		·
	1000		84,98
	750		
	Электродвигате.	ли серии АК	
3 габарит	Все частоты вращения	20 +0,017/+0,002	19,99
4 габарит	3000	30 +0,017/+0,002	29,98
	1500		
•	1000		
5 габарит	Все частоты вращения	40 +0,020/+0,003	39,98
6 габарит		50 +0,020/+0,003	49,98
7 габарит		60 +0,020/+0,003	59,98

Номер под-

Тип электродвигателя

Tun one or one or or or or or or or or or or or or or	Unarara paguanua a6/	Диаметр посадочного м	еста под подшипники, мм
Тип электродвигателя	Частота вращения, об/мин	номинальный	допустимый
8 габарит	3000	70 +0,023/+0,003	69,97
	1500		69,98
	1000		
	7500		
9 габарит	3000	85 +0,023/+0,003	84,97
	1000		84,98
	750		

Таблица 2. Номинальные, допустимые при текущем ремонте и предельные значения радиального зазора подшипников электродвигателей

Частота вращения,

Радиальный зазор, мм

помер под-	Тип электродвигателя	об/мин	- L		
шилника			номинальный	допустимый	предельный
6-180501	4AA56	Все частоты вращения	0,003-0,018	0,03	0,04
	4AA63	3000		0,04	0,05
		1500, 1000		0,03	0,04
6-180502	4A71	3000	0,003-0,018	0,07	0,08
		1500-750		0,03	0,04
6-180604	4A80, 4A90	3000	0,005-0,020	0,07	0,08
6-180-605	4A80, 4A90	1500-750	0,005-0,020	0,03	0,04
6-180606	4A100	3000	0,005-0,020	0,07	0,08
		1500-750		0,04	0,05
6-180607	4A112	3000	0,006-0,023	0,09	0,10
		1500-750		0,04	0,05
6-180609	4A132	3000	0,006-0,023	0,09	0,10
		1500-750		0,07	0,08
6-310	4A160	3000	0,006-0,023	0,09	0,10
		1500-750	1	0,07	0,08
6-312	4A180	3000	0,008-0,028	0,10	0,11
		1500-750		0,08	0,09
6-313	4A200	3000	0,008-0,028	0,10	0,11
		1500-750		0,08	0,09
6-314	4A225	3000	0,008-0,028	0,12	0,13
) 		1500-750		0,10	0,11
6-317	4A250	3000	0,012-0,036	0,12	0,13
	; 	1500-750	1	0,10	0,11

Номер под-	Тип электродвигателя	Частота вращения, об/мин	Радиальный зазор, мм		
шипника			номинальный	допустимый	предельный
70-319	4A315, 4AH315	Все частоты вращения	0,012-0,036	0,14	0,15
70-322	4A355, 4AH355		0,012-0,036	0,14	0,15
6-2310	4A160	3000	0,020-0,055	0,09	0,10
		1500-750		0,07	0,08
6-2312	4A180	3000	0,025-0,065	0,10	0,11
		1500-750		0,08	0,09
6-2313	4 A 200	3000	0,025-0,065	0,10	0,11
		1500-750		80,0	0,09
6-2314	4A225	3000	0,025-0,065	0,12	0,13
		1500-750		0,10	0,11
6-2317	4A250	3000	0,030-0,070	0,12	0,13
	4A280	1500-750		0,10	0,11
0-2319	4A315	Все частоты вращения	0,035-0,080	0,14	0,15
0-2322	4A355		0,035-0,080	0,14	0,15
308	АК, 5 габарит		0,006-0,023	0,06	0,07
	АК, 6 габарит	3000		80,0	0,09
310	АК, 6 габарит	1500, 1000, 750	0,006-0,023	0,06	0,07
	АК, 7 габарит	3000		0,09	0,10
312	АК, 7 габарит	1500, 1000, 750	0,008-0,028	0,09	0,10
	АК, 8 габарит	3000		0,10	0,12
314	АК, А2, АО2, 8 габарит	3000	0,010-0,030	0,10	0,12
		1500, 1000, 750		0,12	0,15
317	АК, А2, АQ2, 9 габарит	Все частоты вращения	0,012-0,036	0,12	0,15
60304	АОЛ2, 1 габарит		0,005-0,020	0,06	0,07
60305	АОЛ2, 2 габарит		0,005-0,020	0,06	0,07
60306	' АО2, АОЛ2, 3 габарит		0,005-0,020	0,06	0,07
60308	АО2, АОК2, 4 габарит		0,006-0,023	0,06	0,07
60309	АО2, АОК2, 5 габарит		0,006-0,023	0,06	0,07
309	АО2, АОК2, 6 габарит	3000, 1500	0,006-0,023	0,08	0,09
		1000, 750		0,06	0,07
311	АО2, АОК2, 7 габарит	Все частоты вращения	0,008-0,028	0,09	0,10
2312	АК, 7 габарит	1500, 1000, 750	0,025-0,065	0,09	0,10
2309K	А2, АО2, АОК2, 6 габарит	1500, 1000, 750	0,020-0,055	0,08	0,09
2311K	А2, АО2, АОК2, 7 габарит	1500, 1000, 750	0,025-0,065	0,09	0,10
2314K	А2, АО2, АОК2, 8 габарит	1500, 1000, 750	0,030-0,070	0,10	0.12
2317	А2, АО2, АОК2, 9 габарит	1500, 1000, 750	0,035-0,080	0,12	0,15

Таблица 3. Номинальные и допустимые значения диаметра контактных колец

Tun analyza annua ana	Диаметр контактного кольца, мм		
Тип электродвигателя	номинальный	допустимый	
АК, габарит 5	73	68,0	
АОК2, габарит 4 и 5			
АК, АОК2, габарит 6	80	75,0	
АК, габарит 7	120	110,80	
АК, габарит 8	122	112,80	
AOK2, габарит 7 и 8	84	74,0	

Таблица 4. Данные по выбору сверл и метчиков

Поврежденная резьба	Диаметр сверла для рассверливания отверстия с поврежденной резьбой	Размер метчиков для нарезания новой резьбы
M5 ×0,8	5,2	M6×0,8
	. 5,0	M6×1,0
M6×1,0	7,0	M8×1,0
	6,7	M8×1,25
M8×1,25	8,7	M10×1,25
	8,5	M10×1,5
M10×1,5	10,5	M12×1,5
	10,2	M12×1,75
M12×1,75	12,2	M14×1,75
	11,9	M14×2,0
M14×2,0	14,0 ·	M16×2,0
M16×2,0	16,2	M18×2,0
	15,4	M18×2,5
	17,2	M20×2,5
M18×2,5	18,0	M20×2,5
	19,2	M22×2,5
M20×2,5	20,0	M22×2,5
	20,1	M24×3,0
M22×2,5	22,0	M24×2,5
	20,9	M24×3,0
	23,9	M27×3,0

Примечание. При рассверливании отверстий в верхней части станины следят, чтобы металлические стружки не попадали на обмотку. При рассверливании и нарезании резьбы ремонтного размера в отверстни под болт креплення подшипникового щита диаметр отверстия в ушке щита должен быть на 1 мм больше диаметра болта с ремонтной резьбой.

Литература

- Виноградов Н. В. Обмотка электрических машин. М.: Высшая школа, 1977.
- *Дренов П. В.* Справочник по ремонту электрических машин. Киев. Техника, 1964.
 - Дьяков В. И. Типовые расчеты по электрооборудованию. М.: 1976.
 - Клоков Б. П. Обмотчик электрических машин. М.: Высшая школа, 1887.
- *Клоков Б. П.* Преподавание курса «Обмотка электрических машин». М.: Высшая школа. 1877.
 - Кокарев А. С. Справочник молодого обмотчика. М.: Высшая школа, 1985.
 - Корицкий Ю. В. Электротехнические материалы. М.: Энергия, 1976.
- *Лихачев В. Л.* Электротехника. Справочник. Том 1 и том 2. М.: Солон-Р, 2001.
- $\it Mapшa\kappa E. J.$ Ремонт обмоток статоров электрических машин переменного тока. $\it M.$: Энергия.
- Перельмутер Н. М. Электромонтер-обмотчик и изолировщик по ремонту электрических машин и трансформаторов. М.: Высшая школа, 1884.
- *Тембель П. В., Геращенко Г. В.* Справочник по обмоточным данным электрических машин и аппаратов. Киев. Техника, 1981.

Содержание

Вв	еде	ние
1.	Уст	ройство электрических машин
	1.1.	Назначение и классификация электрических машин
	1.2.	Асинхронные машины
		1.2.1. Первая единая серия
		1.2.2. Вторая единая серия
		1.2.3. Единая серия 4 А
		1.2.4. Крановые электродвигатели
		1.2.5. Электродвигатели повышенной частоты
		1.2.6. Однофазные электродвигатели
2.	Схе	емы обмоток электрических машин
	2.1.	Виды обмоток электрических машин и способы их изображения 20
	2.2.	Схемы трехфазных обмоток
		2.2.1. Однослойные концентрические обмотки
		2.2.2. Однослойные шаблонные (равнокатушечные) обмотки 31
		2.2.3. Двухслойные обмотки
		2.2.4. Одно- и двухслойные обмотки
		2.2.5. Обмотки многоскоростных двигателей
	2.3.	Схемы обмоток одно- и двухфазных двигателей
3.	О б	моточные провода
4.	Из	оляционные материалы
	4.1.	Требования к' изоляции электрических машин

4.3. Характеристика изоляционных материалов

. . . 66

. , 69

. . 75

. 79

		Содержание 237
		4.3.4. Текстолиты и гетинаксы
		4.3.5. Стеклоленты, ленты бандажные и утягивающие
	4.4.	Материалы для пропитки обмоток
		4.4.1. Электроизоляционные лаки
		4.4.2. Лаки для пропитки обмоток электрических машин 89
		4.4.3. Электроизоляционные эмали
		4.4.4. Компаунды для пропитки и заливки
		4.4.5. Составы без растворителей для пропитки обмоток электрических машин
5.		ресчет обмоточных данных при ремонте еремотке асинхронных электродвигателей 94
	5.1.	Пересчет обмотки на другое напряжение
	5.2.	Изменение напряжения питания электродвигателя 97
	5.3.	Пересчет трехфазной обмотки на однофазную
	5.4.	Подбор диаметров провода и числа параллельных проводников 102
	5.5.	Замена круглого обмоточного провода двумя проводами 104
6.	Per	монт асинхронных электродвигателей
	6.1.	Технологический процесс ремонта электродвигателей
	6.2.	Работы по разборке электродвигателей и определению дефектов 112
	6.3.	Ремонт деталей и узлов электродвигателя
	6.4.	Обмоточно-изоляционные работы
	6.5.	Пропитка и сушка статорных обмоток
7.	Из	готовление деревянных клиньев
8.	Об	моточные данные электрических машин 130
	8.1.	Обмоточные данные электродвигателей единой серии A2 и AO2 и их модификаций 1—9-го габаритов на напряжение 220/380 В 132
	8.2.	Обмоточные данные фазных роторов электродвигателей серий AOK2 и AK2 4—9-го габаритов
	8.3.	Обмоточные данные электродвигателей серии 4А
	8.4.	Обмоточные данные роторов электродвигателей серий 4АНК и 4АК с высотой оси вращения 280—355 мм
	8.5.	Обмоточные данные взрывозащищенных электродвигателей серии ВАО 0—9-го габаритов

8.6.	Обмоточные данные взрывозащищенных электродвигателей серии ВАО с высотой оси вращения 315, 355 и 450 мм
8.7 .	Обмоточные данные многоскоростных электродвигателей 205
	8.7.1. Обмоточные данные многоскоростных электродвигателей серии AO2 1—9-го габаритов на напряжение 380 В 205
	8.7.2. Примеры схем обмоток статора двухскоростных электродвигателей с переключением Δ/YY
	8.7.3. Обмоточные данные многоскоростных электродвигателей серии 4A132
	8.7.4. Обмоточные данные многоскоростных электродвигателей серии ВАО 6—9-го габаритов на напряжение 380 В
Прило	жения
Литер	атура