Магнитно-резонансный томограф (МРТ) - принцип работы

В 1973 году американский химик Пол Лотербур опубликовал в журнале Nature статью под названием «Создание изображения с помощью индуцированного локального взаимодействия; примеры на основе магнитного резонанса». Позднее британский физик Питер Мэнсфилд предложит более совершенную математическую модель получения изображения целого организма, а в 2003 году исследователи получат Нобелевскую премию за открытие метода МРТ в медицине.

Немалый вклад в создание современной магнитно-резонансной томографии внесет и американский ученый Реймонд Дамадьян, отец первого коммерческого аппарата МРТ и автор работы «Обнаружение опухоли с помощью ядерного магнитного резонанса», опубликованной в 1971 году.

Но справедливости ради стоит отметить, что задолго до западных исследователей, в 1960 году, советский ученый Владислав Иванов уже подробно изложил принципы МРТ, тем не менее авторское свидетельство он получил лишь в 1984 году… Давайте же оставим споры об авторстве, и рассмотрим наконец в общих чертах принцип работы магнитно-резонансного томографа.

В наших организмах очень много атомов водорода, а ядро каждого атома водорода — это один протон, который можно представить в виде маленького магнитика, существующего благодаря наличию у протона ненулевого спина. То что ядро атома водорода (протон) имеет спин, - это значит что оно как бы вращается вокруг своей оси. При этом известно, что у ядра водорода есть положительный электрический заряд, а вращающийся вместе с наружной поверхностью ядра заряд — это подобие маленького витка с током. Получается, что каждое ядро атома водорода — это миниатюрный источник магнитного поля.

Если теперь много ядер атомов водорода (протоны) поместить во внешнее магнитное поле, то они начнут пытаться сориентироваться по этому магнитному полю подобно стрелкам компасов. Однако в процессе такой переориентации ядра начнут прецессировать, (как прецессирует ось гироскопа при попытке его наклонить), потому что магнитный момент каждого ядра оказывается связан с механическим моментом ядра, с наличием у него упомянутого выше спина.

Допустим, ядро водорода поместили во внешнее магнитное поле с индукцией 1 Тл. Частота прецессии в этом случае составит 42,58 МГц (это так называемая ларморовская частота для данного ядра и для данной индукции магнитного поля). И если теперь оказать дополнительное воздействие на это ядро электромагнитной волной с частотой 42,58 МГц, возникнет явление ядерного магнитного резонанса, то есть амплитуда прецессии возрастет, поскольку вектор общей намагниченности ядра станет больше.

И таких ядер, способных прецессировать и попадать в резонанс, в наших телах миллиард миллиардов миллиардов. Но поскольку в режиме обычной повседневной жизни магнитные моменты всех ядер водорода и других веществ в нашем теле друг с другом взаимодействуют, то общий магнитный момент всего тела равен нулю.

Действуя радиоволнами на протоны, получают резонансное усиление колебаний (увеличение амплитуд прецессий) этих протонов, а по окончании внешнего воздействия протоны стремятся вернуться к своем исходным состояниям равновесия, и тогда уже они сами излучают фотоны радиоволн.

Таким образом в аппарате МРТ тело человека (или какое-нибудь другое исследуемое тело или предмет) превращается периодически то в набор радиоприемников, то в набор радиопередатчиков. Исследуя таким образом участок за участком тела, аппарат строит пространственную картину распределения атомов водорода в теле. И чем более высока напряженность магнитного поля томографа — тем больше атомов водорода, связанных с другими атомами, расположенными рядом, можно исследовать (тем выше разрешение магнитно-резонансного томографа).

Современные медицинские томографы в качестве источников внешнего магнитного поля содержат электромагниты на сверхпроводниках, охлаждаемые жидким гелием. В некоторых томографах открытого типа для этой цели используются постоянные неодимовые магниты.

Оптимальная индукция магнитного поля в аппарате МРТ составляет сегодня 1,5 Тл, она позволяет получать довольно качественные снимки многих частей тела. При индукции менее 1 Тл не получится сделать качественный снимок (достаточно высокого разрешения), например малого таза или брюшной полости, однако для получения обычных снимков МРТ головы и суставов подходят и такие слабые поля.

Для правильной пространственной ориентации, в магнитно-резонансном томографе кроме постоянного магнитного поля используются еще и градиентные катушки, создающие дополнительное градиентное возмущение в однородном магнитном поле. В результате наиболее сильный резонансный сигнал локализуется более точно в том или ином срезе. Мощность и параметры действия градиентных катушек — наиболее значимые показатели в МРТ — от них зависит разрешение и быстродействие томографа.

Андрей Повный


Источник: http://electrik.info